matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieB-adisches System
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - B-adisches System
B-adisches System < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

B-adisches System: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Fr 23.05.2014
Autor: MissJule

Aufgabe
Seien B, k [mm] \in \IN, [/mm] B [mm] \ge [/mm] 2, k [mm] \ge [/mm] 1. Schreiben Sie die Zahlen
(a) [mm] \bruch{1}{B^{k}} [/mm]
(b) [mm] \bruch{1}{B^{k} - 1} [/mm]
(c) [mm] \bruch{1}{B^{k} + 1} [/mm]
(d) [mm] \bruch{1}{\summe_{i=0}^{k} B^{i}} [/mm]
im B-adischen System.
Hinweis: Ein Taschenrechner könnte nützlich zur Ideenfindung sein; für das Basteln eines Beweises könnten die geometrische Summe / Reihe von Nutzen sein. Oder Sie nutzen die geometrische Summe / Reihe direkt zum Finden eines Beweises.




Hallo,

ich stehe bei Aufgabenteil c an.

Was ich bereits habe:

Teil a) [mm] \bruch{1}{B^{k}} [/mm] ist in B-adischer Darstellung
0.0....01, wobei die 1 k Stellen rechts neben dem Komma steht, dies folgt direkt aus dem Bildungsgesetz der B-adischen Zahlen.

Teil b) Ideenfindung im Binärsystem:
[mm] \bruch{1}{2^{1} - 1} [/mm] = 1.0
[mm] \bruch{1}{2^{2} - 1} [/mm] = [mm] \bruch{1}{3} [/mm]  = [mm] 0.\overline{01} [/mm]
[mm] \bruch{1}{2^{3} - 1} [/mm] = [mm] \bruch{1}{7} [/mm]  = [mm] 0.\overline{001} [/mm]
usw.
Behauptung:  [mm] \bruch{1}{B^{k} - 1} [/mm] ist die Zahl, bei der jeweils die i * b-te Stelle nach dem Komma gleich 1 ist und alle anderen Stellen 0 sind, wobei i [mm] \in \IN [/mm] alle Werte von 1 bis unendlich annimmt.

Beweis:
Es gilt:
[mm] \bruch{1}{B^{k} - 1} [/mm] = [mm] \summe_{i=1}^{\infty} a_{i} [/mm] * [mm] (\bruch{1}{B})^{i} [/mm]
wobei [mm] a_{i} [/mm] = 1 für alle [mm] a_{i} [/mm] teilbar durch k gilt, für alle anderen [mm] a_{i} [/mm] ist B = 0

es folgt:

[mm] \bruch{1}{B^{k} - 1} [/mm]
= [mm] \summe_{i=1}^{\infty} (\bruch{1}{B})^{k*i} [/mm]
= [mm] \summe_{i=1}^{\infty} (\bruch{1}{B^{k}})^{i} [/mm]
= [mm] \bruch{1}{B^{k}} \summe_{i=1}^{\infty} [/mm] * [mm] (\bruch{1}{B^{k}})^{i-1} [/mm]
= [mm] \bruch{1}{B^{k}} \summe_{i=0}^{\infty} [/mm] * [mm] (\bruch{1}{B^{k}})^{i} [/mm]

mit der geometrischen Summenformel folgt:

[mm] \bruch{1}{B^{k} - 1} [/mm]
= [mm] \bruch{1}{B^{k}} [/mm] * [mm] \bruch{1}{1 - \bruch{1}{B^{k}}} [/mm]
= [mm] \bruch{1}{B^{k}} [/mm] * [mm] \bruch{B^{k}}{B^{k} - 1} [/mm]
= [mm] \bruch{1}{B^{k} - 1} [/mm]

Soweit so gut, hoffe das passt so in der Art.

Teil c) Da habe ich bis jetzt folgendes:
Ideenfindung im Binärsystem:
[mm] \bruch{1}{2^{1} + 1} [/mm] = [mm] \bruch{1}{3} [/mm]  = [mm] 0.\overline{01} [/mm]
[mm] \bruch{1}{2^{2} + 1} [/mm] = [mm] \bruch{1}{5} [/mm]  = [mm] 0.\overline{0011} [/mm]
[mm] \bruch{1}{2^{3} + 1} [/mm] = [mm] \bruch{1}{9} [/mm]  = [mm] 0.\overline{000111} [/mm]

Ich versuche zu beweisen:
Es gilt:
[mm] \bruch{1}{B^{k} + 1} [/mm] = [mm] \summe_{i=1}^{\infty} a_{i} [/mm] * [mm] (\bruch{1}{B})^{i} [/mm]
wobei [mm] a_{i} [/mm] = 1 für alle  [mm] a_{i} \in \{ i * ((k+1), ...., 2k) \}, [/mm] für alle anderen [mm] a_{i} [/mm] ist B = 0

Hier hätte ich die Gleichung:  [mm] \summe_{i=1}^{\infty} (\bruch{1}{B})^{i* (k+1)} [/mm] + ... [mm] +\summe_{i=1}^{\infty} (\bruch{1}{B})^{i* (2k)} [/mm]

Jetzt stehe ich vor dem Problem, dass ich hier nicht sehe, wo ich die geometrische Reihe einsetzen kann, denn ich sollte jetzt wohl aus jeder einzelnen Summe [mm] (\bruch{1}{B})^{irgendwas} [/mm] herausheben, finde aber keine sinnvolle Möglichkeit, dies nicht in Abhängigkeit von i zu tun. Wobei: eventuell kann ich ja jede Summe für sich betrachten... hmm muss ich noch probieren.

Hat jemand einen Tipp für mich?

liebe Grüße,
MissJule

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
B-adisches System: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Fr 23.05.2014
Autor: abakus


> Seien B, k [mm]\in \IN,[/mm] B [mm]\ge[/mm] 2, k [mm]\ge[/mm] 1. Schreiben Sie die
> Zahlen
> (a) [mm]\bruch{1}{B^{k}}[/mm]
> (b) [mm]\bruch{1}{B^{k} - 1}[/mm]
> (c) [mm]\bruch{1}{B^{k} + 1}[/mm]
> (d)
> [mm]\bruch{1}{\summe_{i=0}^{k} B^{i}}[/mm]
> im B-adischen System.
> Hinweis: Ein Taschenrechner könnte nützlich zur
> Ideenfindung sein; für das Basteln eines Beweises könnten
> die geometrische Summe / Reihe von Nutzen sein. Oder Sie
> nutzen die geometrische Summe / Reihe direkt zum Finden
> eines Beweises.

>
>
>

> Hallo,

>

> ich stehe bei Aufgabenteil c an.

>

> Was ich bereits habe:

>

> Teil a) [mm]\bruch{1}{B^{k}}[/mm] ist in B-adischer Darstellung
> 0.0....01, wobei die 1 k Stellen rechts neben dem Komma
> steht, dies folgt direkt aus dem Bildungsgesetz der
> B-adischen Zahlen.

>

> Teil b) Ideenfindung im Binärsystem:
> [mm]\bruch{1}{2^{1} - 1}[/mm] = 1.0
> [mm]\bruch{1}{2^{2} - 1}[/mm] = [mm]\bruch{1}{3}[/mm] = [mm]0.\overline{01}[/mm]
> [mm]\bruch{1}{2^{3} - 1}[/mm] = [mm]\bruch{1}{7}[/mm] = [mm]0.\overline{001}[/mm]
> usw.
> Behauptung: [mm]\bruch{1}{B^{k} - 1}[/mm] ist die Zahl, bei der
> jeweils die i * b-te Stelle nach dem Komma gleich 1 ist und
> alle anderen Stellen 0 sind, wobei i [mm]\in \IN[/mm] alle Werte von
> 1 bis unendlich annimmt.

>

> Beweis:
> Es gilt:
> [mm]\bruch{1}{B^{k} - 1}[/mm] = [mm]\summe_{i=1}^{\infty} a_{i}[/mm] *
> [mm](\bruch{1}{B})^{i}[/mm]
> wobei [mm]a_{i}[/mm] = 1 für alle [mm]a_{i}[/mm] teilbar durch k gilt, für
> alle anderen [mm]a_{i}[/mm] ist B = 0

>

> es folgt:

>

> [mm]\bruch{1}{B^{k} - 1}[/mm]
> = [mm]\summe_{i=1}^{\infty} (\bruch{1}{B})^{k*i}[/mm]
> = [mm]\summe_{i=1}^{\infty} (\bruch{1}{B^{k}})^{i}[/mm]
> =
> [mm]\bruch{1}{B^{k}} \summe_{i=1}^{\infty}[/mm] *
> [mm](\bruch{1}{B^{k}})^{i-1}[/mm]
> = [mm]\bruch{1}{B^{k}} \summe_{i=0}^{\infty}[/mm] *
> [mm](\bruch{1}{B^{k}})^{i}[/mm]

>

> mit der geometrischen Summenformel folgt:

>

> [mm]\bruch{1}{B^{k} - 1}[/mm]
> = [mm]\bruch{1}{B^{k}}[/mm] * [mm]\bruch{1}{1 - \bruch{1}{B^{k}}}[/mm]
> = [mm]\bruch{1}{B^{k}}[/mm] * [mm]\bruch{B^{k}}{B^{k} - 1}[/mm]
> =
> [mm]\bruch{1}{B^{k} - 1}[/mm]

>

> Soweit so gut, hoffe das passt so in der Art.

>

> Teil c) Da habe ich bis jetzt folgendes:
> Ideenfindung im Binärsystem:
> [mm]\bruch{1}{2^{1} + 1}[/mm] = [mm]\bruch{1}{3}[/mm] = [mm]0.\overline{01}[/mm]
> [mm]\bruch{1}{2^{2} + 1}[/mm] = [mm]\bruch{1}{5}[/mm] = [mm]0.\overline{0011}[/mm]
> [mm]\bruch{1}{2^{3} + 1}[/mm] = [mm]\bruch{1}{9}[/mm] =
> [mm]0.\overline{000111}[/mm]

>

> Ich versuche zu beweisen:
> Es gilt:
> [mm]\bruch{1}{B^{k} + 1}[/mm] = [mm]\summe_{i=1}^{\infty} a_{i}[/mm] *
> [mm](\bruch{1}{B})^{i}[/mm]
> wobei [mm]a_{i}[/mm] = 1 für alle [mm]a_{i} \in \{ i * ((k+1), ...., 2k) \},[/mm]
> für alle anderen [mm]a_{i}[/mm] ist B = 0

>

> Hier hätte ich die Gleichung: [mm]\summe_{i=1}^{\infty} (\bruch{1}{B})^{i* (k+1)}[/mm]
> + ... [mm]+\summe_{i=1}^{\infty} (\bruch{1}{B})^{i* (2k)}[/mm]

>

> Jetzt stehe ich vor dem Problem, dass ich hier nicht sehe,
> wo ich die geometrische Reihe einsetzen kann, denn ich
> sollte jetzt wohl aus jeder einzelnen Summe
> [mm](\bruch{1}{B})^{irgendwas}[/mm] herausheben, finde aber keine
> sinnvolle Möglichkeit, dies nicht in Abhängigkeit von i
> zu tun. Wobei: eventuell kann ich ja jede Summe für sich
> betrachten... hmm muss ich noch probieren.

>

> Hat jemand einen Tipp für mich?

Hallo,
durch Erweitern erhält man [mm] \frac{1}{B^k+1}= \frac{B^k-1}{B^{2k}-1}=(B^k-1)\frac{1}{B^{2k}-1}[/mm].
Hilft das vielleicht?
(Bin mir selbst nicht sicher.)
Gruß Abakus
>

> liebe Grüße,
> MissJule

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]