BLF < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien [tex]n \in \mathbb{N}[/tex], [tex]K=\mathbb{R}[/tex] oder [tex]K=\mathbb{C}[/tex] und [tex]V=K^n[/tex]. Weiter sei [tex]\hut B[/tex] die geordnete [tex]K[/tex]-Standardbasis von [tex]V[/tex], es seien [tex]\sigma \in Aut(K)[/tex] und [tex]f[/tex] eine [tex]\sigma[/tex]-Bilinearform auf [tex]V[/tex].
Seien [tex](v_1,...,v_n),(w_1,...,w_n) \in V[/tex]. Zeigen Sie, dass dann
[tex]f((v_1,...,v_n),(w_1,...,w_n)) = (v_1,...,v_n)*\mathcal{M}(f, \hat B) * (w_1^\sigma,...,w_n^\sigma)^t[/tex] ist, wobei [tex](v_1,...,v_n)[/tex] und [tex](w_1^\sigma,...,w_n^\sigma)^t[/tex] als [tex]1 \times n[/tex]- bzw. [tex]n \times 1[/tex]-Matrizen interpretiert werden |
Wie kann man an diese Aufgabe ran gehen um , dass zu zeigen ?
LG lz
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:57 Do 09.07.2015 | Autor: | hippias |
In der zu zeigenden Gleichung taucht die Matrixdarstellung von $f$ bezueglich $B$ auf. Daher kann es ratsam sein, die Vektoren mittels $B$ darzustellen; etwa [mm] $(v_{i})= \sum v_{i}B_{i}$. [/mm] Nun kannst Du versuchen [mm] $f((v_{i}),(w_{j}))= f(\sum v_{i}B_{i}, \sum w_{j}B_{j})$ [/mm] durch Anwendung des Distributivgesetzes aufzuloesen; Du solltest dabei unter anderem erkennen, dass in dieser Summe die Eintraege der Matrix $M(f,B)$ enthalten sind. Wenn man Glueck hat, erkennt man, dass sich die rechte Seite der zu zeigenden Gleichung ergibt.
Anderenfalls koenntest Du aehnliche Rechnungen auf die rechte Seite anwenden (d.h. Anwendung der Rechenregeln fuer ein Matrixprodukt), um auf einen Ausdruck zu kommen, der gleich der linken Seite ist.
|
|
|
|
|
Okay;) Vielen Dank . Ich versuche es mal .
Lg lz
|
|
|
|