matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisBanachraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Banachraum
Banachraum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banachraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 So 12.09.2004
Autor: regine

Hallo,

ich habe mir die Definition eines Banachraumes angesehen. Das ist also ein Vektorraum V über [mm] \IR [/mm] oder [mm] \IC [/mm] mit einer Norm und einer durch diese Norm induzierten Metrik bzgl. derer jede Cauchyfolge konvergiert.  ( [mm] \Rightarrow [/mm] Vollständigkeit)

Gut, und wie sehen nun Abbildungen in Banachräumen aus? Ist das einfach die Menge L(X,Y) der Abbildung f: X [mm] \to [/mm] Y ?

Danke und viele Grüße,
Regine.

        
Bezug
Banachraum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 So 12.09.2004
Autor: andreas

hi regine

also bei uns waren mit [m] \mathcal{L}(X, Y) [/m] die menge der linearen abbildungen aus dem banachraum $X$ in den banachraum $Y$ bezeichnet. ob es für allgemeine - nicht-notwendigerweise lineare - abbildungen von banachräumen ein allgemeingebräuchliches symbol gibt, weiß ich allerdings nicht.

als abbildungen von einem banachraum in einen anderen kannst du z.b. jede abbilsung von [m] (\mathbb{C}^n, \| \cdot \|) [/m] nach  [m] (\mathbb{C}^m, \| \cdot \|) [/m] betrachten, da der [m] \mathbb{K}^n [/m] mit der vom kannonischen skalarprodukt induzierten norm vollständig ist (also nicht nur ein banachraum, sondern sogar ein reeler oder komplexer hilbertraum).
ein weiteres beispiel für eine abbildung zwischen banachräumen ist das funktional [m] T_g : C([a, b]) \to \mathbb{R} [/m]  mit [m] T_g(f) = \int_a^b f(x) g(x) \, \text{d} x [/m] ([m] a < b, \; g \in C([a, b]) [/m]). wobei [m] C([a, b]) [/m] mit der norm [m] \| f \|_C := \max_{x \in [a, b]} f(x) [/m] und [m] \mathbb{R} [/m] mit dem gewöhnlichen betrag banachräume sind.


hoffe ich habe dir etwas geholfen - wenn etwas unklar sein sollte frage nach.

andreas


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]