matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikBarwert
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Finanzmathematik" - Barwert
Barwert < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Barwert: Zahlungen vergleichen
Status: (Frage) beantwortet Status 
Datum: 19:31 Do 30.09.2010
Autor: LeonieWiwi

Aufgabe
Kennzeichnen Sie in der mittleren Spalte der folgenden Tabelle, ob der Barwert von Zahlung A größer (>), kleiner (<) oder gleich (=) dem Barwert von Zahlung B ist. Gehen Sie bei Ihren Berechnungen - wenn nichts anderes angegeben ist - von einem risikolosem Zinssatz in Höhe von 10 % und ggf. einer Risikorämie von 5 Prozentpunkten aus.

Ich kann hier die Tabelle leider nicht so darstellen, daher habe ich die Zahlungen untereinander geschrieben. Es sind fünf Aufgaben.

1) Zahlung A: Eine sichere Zahlung in Höhe von x, fällig in acht Jahren
Zahlung B: Eine sichere Zahlung in Höhe von x, fällig in fünf Jahren

2) Zahlung A: Eine sichere Zahlung in t=2 in Höhe von 1.000 Euro.
Zahlung B: Eine unsichere Zahlung in t=2 in Höhe von 1.092,97 Euro.

3) Zahlung A: Eine risikolose Anleihe mit einer Norminalverzinsung von 9%.
Zahlung B: Eine risikolose Anleihe mit gleicher Laufzeit und einer Norminalverzinsung von 8%.

4) Zahlung A: Eine sichere ewige Rente ab t=1 in Höhe von 1.000 Euro.
Zahlung B: Eine sichere 10-jährige Rente ab t=1 in Höhe von 5.000 Euro.

5) Zahlung A: Eine unsichere Zahlung in Höhe von 1.400 Euro in t=3.
Zahlung B: Eine sichere Zahlung in Höhe von 1.250 Euro in t=4.


Hallo ihr,

hier meine Lösungsvorschläge:

1) Keine Ahnung, ich würde raten und das hat ja keinen Sinn :(


[mm] 2)\bruch{1.000}{1,1^2} [/mm] = 826,44 (Zahlung A)
[mm] \bruch{1.092,97}{1,15^2} [/mm] = 826,44 (Zahlung B)
=> Zahlung A = Zahlung B


3) 9% Norminallaufzeit > 8% Norminallaufzeit
=> Zahlung A > Zahlung B


4) [mm] \bruch{1.000}{0,1} [/mm] = 10.000 (Zahlung A)
[mm] \bruch{1,1^{10} - 1}{1,1^{10} * 0,1}*5.000 [/mm] = 30.722,84 (Zahlung B)
=> Zahlung A < Zahlung B


5) [mm] \bruch{1.400}{1,15^3} [/mm] = 920,52 (Zahlung A)
[mm] \bruch{1.250}{1,1^4} [/mm] = 853,77 (Zahlung B)
=> Zahlung A > Zahlung B



Liebe Grüße
Leonie

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Barwert: Antwort
Status: (Antwort) fertig Status 
Datum: 07:15 Fr 01.10.2010
Autor: Josef

Hallo Leonie,

> Kennzeichnen Sie in der mittleren Spalte der folgenden
> Tabelle, ob der Barwert von Zahlung A größer (>), kleiner
> (<) oder gleich (=) dem Barwert von Zahlung B ist. Gehen
> Sie bei Ihren Berechnungen - wenn nichts anderes angegeben
> ist - von einem risikolosem Zinssatz in Höhe von 10 % und
> ggf. einer Risikorämie von 5 Prozentpunkten aus.
>  
> Ich kann hier die Tabelle leider nicht so darstellen, daher
> habe ich die Zahlungen untereinander geschrieben. Es sind
> fünf Aufgaben.
>  
> 1) Zahlung A: Eine sichere Zahlung in Höhe von x, fällig
> in acht Jahren
>  Zahlung B: Eine sichere Zahlung in Höhe von x, fällig in
> fünf Jahren
>  
> 2) Zahlung A: Eine sichere Zahlung in t=2 in Höhe von
> 1.000 Euro.
>  Zahlung B: Eine unsichere Zahlung in t=2 in Höhe von
> 1.092,97 Euro.
>  
> 3) Zahlung A: Eine risikolose Anleihe mit einer
> Norminalverzinsung von 9%.
>  Zahlung B: Eine risikolose Anleihe mit gleicher Laufzeit
> und einer Norminalverzinsung von 8%.
>  
> 4) Zahlung A: Eine sichere ewige Rente ab t=1 in Höhe von
> 1.000 Euro.
>  Zahlung B: Eine sichere 10-jährige Rente ab t=1 in Höhe
> von 5.000 Euro.
>  
> 5) Zahlung A: Eine unsichere Zahlung in Höhe von 1.400
> Euro in t=3.
>  Zahlung B: Eine sichere Zahlung in Höhe von 1.250 Euro in
> t=4.
>  
> Hallo ihr,
>  
> hier meine Lösungsvorschläge:
>  
> 1) Keine Ahnung, ich würde raten und das hat ja keinen
> Sinn :(
>  


Beispiel:

x sei z.B. 1.000


A:

[mm] \bruch{1.000}{1,1^8} [/mm] = 466,51


B:

[mm] \bruch{1.000}{1,1^5}= [/mm] 620,92

A < B


Das Beispiel zeigt, dass der Barwert eines zukünftig fälligen Betrags desto kleiner ist, je höher der Zinssatz und je später der Betrag fällig ist.



>
> [mm]2)\bruch{1.000}{1,1^2}[/mm] = 826,44 (Zahlung A)
> [mm]\bruch{1.092,97}{1,15^2}[/mm] = 826,44 (Zahlung B)
> => Zahlung A = Zahlung B
>  
>

[ok]

> 3) 9% Norminallaufzeit > 8% Norminallaufzeit
>  => Zahlung A > Zahlung B

>  

???


Der Barwert eines zukünftig fälligen Betrags ist desto kleiner, je höher der Zinssatz und je später der Betrag fällig ist.


A:

[mm] \bruch{1.000}{1,09}= [/mm] 917,43


B:

[mm] \bruch{1.000}{1,08}= [/mm] 925,93



A < B


>
> 4) [mm]\bruch{1.000}{0,1}[/mm] = 10.000 (Zahlung A)
>  [mm]\bruch{1,1^{10} - 1}{1,1^{10} * 0,1}*5.000[/mm] = 30.722,84
> (Zahlung B)
>  => Zahlung A < Zahlung B

>  

[ok]

>
> 5) [mm]\bruch{1.400}{1,15^3}[/mm] = 920,52 (Zahlung A)
>  [mm]\bruch{1.250}{1,1^4}[/mm] = 853,77 (Zahlung B)
>  => Zahlung A > Zahlung B

>  

[ok]



Viele Grüße
Josef

Bezug
                
Bezug
Barwert: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:26 Fr 01.10.2010
Autor: LeonieWiwi

Hallo Josef,

vielen Dank für deine sehr hilfreiche Antwort! :)

Liebe Grüße
Leonie

Bezug
                        
Bezug
Barwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Fr 01.10.2010
Autor: Josef

Hallo Leonie,

> Hallo Josef,
>  
> vielen Dank für deine sehr hilfreiche Antwort! :)
>  

Gern geschehen!
Freut mich immer wieder, wenn ich etwas helfen konnte.


Viele liebe Grüße
Josef




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]