Barwert berechnen < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
|
Aufgabe | (a) warum gilt [mm] \summe_{k=0}^{n} x^k=\bruch{1-x^{n+1}}{1-x} [/mm] ?
(b) was ist eine ganzjährige vorschüssige Zeitrente ? Berechnen Sie deren Barwert und benutzen Sie a) dabei. |
Hi,
(a) habe ich schon gelöst.
(b) Laut Skript ist eine ganzjährige, vorschüssige Zeitrente gegeben durch
[mm] K_{0}=1+q^{-1}+q^{-2}+q^{-3}+...+q^{-(n-1)}=\bruch{1-q^{-n}}{1-q^{-1}}
[/mm]
Ich weiß nur nicht wie ich den Barwert bestimmen soll. Ich müsste ja eigentlich nur die Zeitrente wieder abzinsen auf den Zeitpunkt null.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:10 Fr 09.02.2018 | Autor: | Staffan |
Hallo,
eine vorschüssige Rente zeichnet sich dadurch aus, daß die jeweiligen Zinsen nicht am Ende, sondern am Anfang einer Berechnungsperiode berechnet und berücksichtigt werden. Deshalb überrascht mich etwas die Darstellung aus dem Script, mit dem bereits - im Ergebnis zwar richtig - der Barwert [mm] (K_0) [/mm] einer vorschüssigen Rente berechnet wird. Denn hier dürfte der erste Summand nicht 1, sondern wegen der sofortigen Verzinsung q betragen und der letzte [mm] q^{-n}. [/mm] Der rechte Term ist der, den man für die Berechnung des Barwerts ansetzen kann. Er ist allerdings in dieser Form in der Praxis nicht üblich. Außerdem soll die Aufgabe a für die Lösung herangezogen werden. Und hier ist der Gedanke mit der Abzinsung völlig richtig.
Man kann die Formel aus dem Script wie folgt umwandeln:
[mm] \bruch{1-q^{-n}}{1-q^{-1}}=\bruch{\left(1-q^{-n}\right) \cdot q^n}{\left(1-q^{-1}\right)\cdot q^n}=\bruch{q^n -1}{q^n - q^{n-1}}=\bruch{q^n -1}{q^{n-1}\cdot\left(q-1\right)} [/mm]
Ersetzt man das x in Aufgabe a durch q und setzt den Exponenten gleich n, unterscheidet sich das dortige Ergebnis von dem soeben dargestellten nur durch einen Teil des Nenners, der ausgehend von dem Endwert aus Aufgabe a die Barwertberechnung ermöglicht. Wegen der vorschüssigen Rente, die einmal mehr als die nachschüssige verzinst wird, sind bei der Abzinsung nur die n-1 Perioden zu berücksichtigen.
Gruß
Staffan
|
|
|
|
|
Hi,
danke erstmal. Ich verusche grade zu beweisen, dass [mm] K_{0}=1+q^{-1}+q^{-2}+q^{-3}+...+q^{-(n-1)}=\bruch{1-q^{-n}}{1-q^{-1}} [/mm] ist.
Ich habe erstmal [mm] s=1+q^{-1}+q^{-2}+q^{-3}+...+q^{-(n-1)} [/mm] gesetzt. Dann habe ich die Gleichung mit q multipliziert und dann die erste Gleichung von der neuen Gleichung abgezogen. Ich komme jedoch dann auf [mm] \bruch{q(1-q^{-n})}{q-1}
[/mm]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:16 Fr 09.02.2018 | Autor: | Staffan |
Hallo,
der Quotient von jeweils zwei Gliedern ist hier nicht q, sondern [mm] q^{-1}. [/mm] Mulipliziere mal damit und bilde die Differenz.
Gruß
Staffan
|
|
|
|