matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBasen Austauschsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Basen Austauschsatz
Basen Austauschsatz < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen Austauschsatz: Tipps
Status: (Frage) beantwortet Status 
Datum: 09:37 So 25.03.2012
Autor: Mathegirl

Aufgabe
[mm] A=(v_1,..,v_4) [/mm]
A'=(v'_1,...,v'_4)
[mm] B=(w_1,..,w_5) [/mm]
B'=(w'_1,...,w'_5)

[mm] M_B^A(F)=\pmat{ 3 & 1 & -2 & 2 \\ -2 & -2 & 7 & -3 \\ 4 & 0 & 3 & 1 \\ 0 & 4 & -17 & 5 } [/mm]

a) zeige, dass A' eine Basis von V ist und B' eine Basis von W.
b) Bestimme [mm] M_B^A'(F), M_B'^A(F), M_B'^A'(F) [/mm]

Könnt ihr mir diese Aufgabe nochmal erklären?

Hier wurden die Transformationsmatrizen ermittelt:

[mm] T_B^B'=\pmat{ 1 & 1 & -1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 } [/mm]

[mm] T_A^A'=\pmat{ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 } [/mm]

Wie kommt man auf diese Transformationsmatrizen? Und woher weiß ich, dass ich diese Transformationsmatrizen ermitteln muss?


Aufgabenteil b) ist mir klar, wenn Ich die Transformationsmatrizen hab.

MfG
Mathegirl

        
Bezug
Basen Austauschsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 So 25.03.2012
Autor: fred97


> [mm]A=(v_1,..,v_4)[/mm]
>  A'=(v'_1,...,v'_4)
>  [mm]B=(w_1,..,w_5)[/mm]
>  B'=(w'_1,...,w'_5)
>  
> [mm]M_B^A(F)=\pmat{ 3 & 1 & -2 & 2 \\ -2 & -2 & 7 & -3 \\ 4 & 0 & 3 & 1 \\ 0 & 4 & -17 & 5 }[/mm]



So wie [mm] M_B^A(F) [/mm] angegeben ist, kann es nicht stimmen, denn [mm] M_B^A(F) [/mm] ist eine 4x4-Matrix. B hat aber 5 Elemente.

FRED

>  
> a) zeige, dass A' eine Basis von V ist und B' eine Basis
> von W.
>  b) Bestimme [mm]M_B^A'(F), M_B'^A(F), M_B'^A'(F)[/mm]
>  Könnt ihr
> mir diese Aufgabe nochmal erklären?
>  
> Hier wurden die Transformationsmatrizen ermittelt:
>  
> [mm]T_B^B'=\pmat{ 1 & 1 & -1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 }[/mm]
>  
> [mm]T_A^A'=\pmat{ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 }[/mm]
>  
> Wie kommt man auf diese Transformationsmatrizen? Und woher
> weiß ich, dass ich diese Transformationsmatrizen ermitteln
> muss?
>
>
> Aufgabenteil b) ist mir klar, wenn Ich die
> Transformationsmatrizen hab.
>  
> MfG
>  Mathegirl


Bezug
                
Bezug
Basen Austauschsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:56 So 25.03.2012
Autor: Mathegirl

Tut mir leid, da muss eine Zeile untergegangen sein.
Es muss heißen:

[mm] M_B^A(F)=\pmat{ 3 & 1 & -2 & 2 \\ -2 & -2 & 7 & -3 \\ 4 & 0 & 3 & 1 \\ 1 & 3 & 12 & 4 \\ 0 & 4 & -17 & 5 } [/mm]

MfG
Mathegirl

Bezug
        
Bezug
Basen Austauschsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 So 25.03.2012
Autor: angela.h.b.


> [mm]A=(v_1,..,v_4)[/mm]
>  A'=(v'_1,...,v'_4)
>  [mm]B=(w_1,..,w_5)[/mm]
>  B'=(w'_1,...,w'_5)
>  

[mm] >$M_B^A(F)=\pmat{ 3 & 1 & -2 & 2 \\ -2 & -2 & 7 & -3 \\ 4 & 0 & 3 & 1 \\ 1 & 3 & 12 & 4 \\ 0 & 4 & -17 & 5 }$ [/mm]

>  
> a) zeige, dass A' eine Basis von V ist und B' eine Basis
> von W.
>  b) Bestimme [mm]M_B^A'(F), M_B'^A(F), M_B'^A'(F)[/mm]
>  Könnt ihr
> mir diese Aufgabe nochmal erklären?
>  
> Hier wurden die Transformationsmatrizen ermittelt:
>  
> [mm]T_B^B'=\pmat{ 1 & 1 & -1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 }[/mm]
>  
> [mm]T_A^A'=\pmat{ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 }[/mm]
>  
> Wie kommt man auf diese Transformationsmatrizen?

Hallo,

man schreibt die Basisvektoren von B' als Linearkombination derer von B und stapelt  die Koeffizienten dann in den Spalten der Matrizen.

Genaueres kann man hierzu nicht sagen, denn Du verrätst uns ja nicht, wie die  [mm] v_i' [/mm] und [mm] w_i' [/mm] definiert sind.
Die komplette Aufgabenstellung dürfte diesbezüglich noch Angaben enthalten.
Ich bin mir sicher, daß sie mal gepostet wurde - und meiner trüben Erinnerung nach auf Nachfrage ergänzt. Suchen mag ich aber nicht.


> Und woher
> weiß ich, dass ich diese Transformationsmatrizen ermitteln
> muss?

Naja, die Darstellungsmatrix [mm] M_B^A(F) [/mm] frißt Vektoren in Koordinaten bzgl A und gibt deren Bilder in Koordinaten bzgl B aus.

Willst Du nun  z.B. [mm] M_B^{A'}(F), [/mm] so kannst Du diese Matrix mithilfe von [mm] M_B^A(F) [/mm] erhalten,  mußt aber als "Vorverdauer" eine Matrix haben, die Koordinatenvektoren bzgl  A' in solche bzgl A verwandelt, die dann [mm] M_B^A(F) [/mm] verspeisen kann:

[mm] M_B^{A'}(F)=M_B^{\green{A}}(F)*T_{\green{A}}^{A'} [/mm]

Die anderen Matrizen dann entsprechend.

LG Angela



>
>
> Aufgabenteil b) ist mir klar, wenn Ich die
> Transformationsmatrizen hab.
>  
> MfG
>  Mathegirl


Bezug
                
Bezug
Basen Austauschsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:30 Mo 26.03.2012
Autor: Mathegirl

In der Aufgabenstellung war weiter nichts gegeben, nur dass die gegebene Matrix eine Abbildung darstellt. Ich verstehe nicht wie man auf diese Transformationsmatrizen kommt.


MfG
Mathegirl

Bezug
                        
Bezug
Basen Austauschsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Mo 26.03.2012
Autor: triad

Hallo,
die korrekte Aufgabenstellung lautet wie folgt:

Sei V ein [mm] \IR-Vektorraum [/mm] mit Basis A = $ [mm] (v_1, \ldots [/mm] , [mm] v_4) [/mm] $, W sei ein [mm] \IR-Vektorraum [/mm] mit Basis B = $ [mm] (w_1, \ldots [/mm] , [mm] w_5) [/mm] $. $ F: V [mm] \to [/mm] W $ sei die lineare Abbildung, die gegeben ist durch
[mm] M^A_B(F) [/mm] = (s.o.)

Weiter seien $ A' = [mm] (v_1' [/mm] , [mm] \ldots [/mm] , [mm] v_4') [/mm] $ mit $ [mm] v_1' [/mm] = v1+v2,  [mm] v_2' [/mm] = v2+v3,  [mm] v_3' [/mm] = v3+v4,  [mm] v_4' [/mm] = v4 $ und $ B' = [mm] (w_1' [/mm] , ... , [mm] w_5') [/mm] $ mit $ [mm] w_1' [/mm] = w1, [mm] w_2' [/mm] = w1 + w2, [mm] w_3' [/mm] = -w1 + w3, [mm] w_4' [/mm] = w1 + w4, [mm] w_5' [/mm] = w1 + w5 $ .

(a) Zeigen Sie, dass A' eine Basis von V und B' eine Basis von W ist.
(b) Bestimmen Sie [mm] M^{A'}_B(F), M^A_{B'}(F), M^{A'}_{B'}(F). [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]