Basenwechsel < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:06 Di 12.08.2008 | Autor: | johnny11 |
Aufgabe | Sie [mm] \pi [/mm] : [mm] \IR^{3} \to \IR^{2} [/mm] eine lineare Abbildung, die bezüglich der Standartbasis durch [mm] \pmat{ 1 & 2 & 3 \\ -5 & 7 & 2 } [/mm] gegeben ist. Man bestimme die Matrix von [mm] \pi [/mm] bezüglich der Basen [mm] B_{\IR^{3}} [/mm] = [mm] (\vektor{1 \\ 0 \\ -9} [/mm] , [mm] \vektor{2 \\ 0 \\ 1} [/mm] , [mm] \vektor{0 \\ 1 \\ 0}) [/mm] und [mm] B_{\IR^{2}} [/mm] = [mm] (\vektor{1 \\ 1} [/mm] , [mm] \vektor{1 \\ -2}) [/mm] |
Ich bin wie folgt vorgegangen:
A' = [mm] QAP^{-1}. [/mm] Für Q habe ich [mm] (\pmat{ 1 & 1 \\ 1 & -2 })^{-1} [/mm] und für [mm] P^{-1} [/mm] habe ich [mm] \pmat{ 1 & 2 & 0 \\ 0 & 0 & 1 \\ -9 & 1 & 0 } [/mm] gewählt.
Doch so erhalte ich jedoch nicht ein richtiges Resultat.
Weshalb funktioniert dies nicht?
Wie erhält man denn die gewünschte Matrix?
|
|
|
|
> Sie [mm]\pi[/mm] : [mm]\IR^{3} \to \IR^{2}[/mm] eine lineare Abbildung, die
> bezüglich der Standartbasis durch [mm]\pmat{ 1 & 2 & 3 \\ -5 & 7 & 2 }[/mm]
> gegeben ist. Man bestimme die Matrix von [mm]\pi[/mm] bezüglich der
> Basen [mm]B_{\IR^{3}}[/mm] = [mm](\vektor{1 \\ 0 \\ -9}[/mm] , [mm]\vektor{2 \\ 0 \\ 1}[/mm]
> , [mm]\vektor{0 \\ 1 \\ 0})[/mm] und [mm]B_{\IR^{2}}[/mm] = [mm](\vektor{1 \\ 1}[/mm]
> , [mm]\vektor{1 \\ -2})[/mm]
> Ich bin wie folgt vorgegangen:
>
> A' = [mm]QAP^{-1}.[/mm] Für Q habe ich [mm](\pmat{ 1 & 1 \\ 1 & -2 })^{-1}[/mm]
> und für [mm]P^{-1}[/mm] habe ich [mm]\pmat{ 1 & 2 & 0 \\ 0 & 0 & 1 \\ -9 & 1 & 0 }[/mm]
> gewählt.
> Doch so erhalte ich jedoch nicht ein richtiges Resultat.
> Weshalb funktioniert dies nicht?
> Wie erhält man denn die gewünschte Matrix?
Hallo,
Dein Tun klingt durchaus richtig.
Welche Matrix erhältst Du denn, und was gefällt Dir an dieser nicht?
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:07 Di 12.08.2008 | Autor: | johnny11 |
> Dein Tun klingt durchaus richtig.
>
> Welche Matrix erhältst Du denn, und was gefällt Dir an
> dieser nicht?
>
Mit diesem Verfahren habe ich dann [mm] \pmat{ -25 & \bruch{2}{3} & \bruch{11}{3} \\ -1 & \bruch{13}{3} & -\bruch{5}{3} } [/mm] := A'
Doch nun sollt ich doch eigentlich [mm] A'*B_{\IR^{3}} [/mm] rechnen können und dann [mm] B_{\IR^{2}} [/mm] erhalten, oder?
|
|
|
|
|
> > Dein Tun klingt durchaus richtig.
> >
> > Welche Matrix erhältst Du denn, und was gefällt Dir an
> > dieser nicht?
> >
>
> Mit diesem Verfahren habe ich dann [mm]\pmat{ -25 & \bruch{2}{3} & \bruch{11}{3} \\ -1 & \bruch{13}{3} & -\bruch{5}{3} }[/mm]
> := A'
Hallo,
nachgerechnet habe ich das nicht.
>
> Doch nun sollt ich doch eigentlich [mm]A'*B_{\IR^{3}}[/mm] rechnen
> können und dann [mm]B_{\IR^{2}}[/mm] erhalten, oder?
Nein.
Was soll A' leisten?
Du "fütterst" A' mit Vektoren, die in Koordinaten bzgl. [mm] B_{\IR_3} [/mm] gegeben sind, und Du bekommst das Bild dieser Vektoren unter der Abbildung [mm] \pi [/mm] geliefert in Koordinaten bzgl. [mm] B_{\IR_2}.
[/mm]
Wenn wir also A' mit [mm] \vektor{1//0//0}_B_{\IR_3} [/mm] füttern, müßten wir [mm] \pi (1*$\vektor{1 \\ 0 \\ -9} [/mm] $+0*$ [mm] \vektor{2 \\ 0 \\ 1} [/mm] $+0* $ [mm] \vektor{0 \\ 1 \\ 0} [/mm] $ herausbekommen - und zwar in Koordinaten bzgl [mm] B_{\IR_2}.
[/mm]
Rechne doch mal nach, ob A' das tut.
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:34 Sa 23.08.2008 | Autor: | johnny11 |
Ich habe mir das ganze nochmals durch den Kopf gehen lassen und gesehen, dass mir doch noch nicht alles so klar ist.
Ich war ja der Meinung, dass [mm] A'*B_{\IR^3} [/mm] = [mm] B_{\IR^2}. [/mm] Aber dies stimmt ja eben nicht.
Leider komme ich beim Beispiel von Angela nicht ganz nach:
> Was soll A' leisten?
>
> Du "fütterst" A' mit Vektoren, die in Koordinaten bzgl.
> [mm]B_{\IR_3}[/mm] gegeben sind, und Du bekommst das Bild dieser
> Vektoren unter der Abbildung [mm]\pi[/mm] geliefert in Koordinaten
> bzgl. [mm]B_{\IR_2}.[/mm]
>
> Wenn wir also A' mit [mm]\vektor{1//0//0}_B_{\IR_3}[/mm] füttern,
> müßten wir [mm]\pi[/mm] (1*[mm]\vektor{1 \\ 0 \\ -9} [/mm]+0*[mm] \vektor{2 \\ 0 \\ 1} [/mm]+0*
> [mm]\vektor{0 \\ 1 \\ 0}[/mm] herausbekommen - und zwar in
> Koordinaten bzgl [mm]B_{\IR_2}.[/mm]
>
> Rechne doch mal nach, ob A' das tut.
Kann mir dies jemand noch ein wenig genauer erklären? Da wäre ich extrem dankbar.
|
|
|
|
|
Hallo johnny11,
> Ich habe mir das ganze nochmals durch den Kopf gehen lassen
> und gesehen, dass mir doch noch nicht alles so klar ist.
>
> Ich war ja der Meinung, dass [mm]A'*B_{\IR^3}[/mm] = [mm]B_{\IR^2}.[/mm]
> Aber dies stimmt ja eben nicht.
>
> Leider komme ich beim Beispiel von Angela nicht ganz nach:
>
>
> > Was soll A' leisten?
> >
> > Du "fütterst" A' mit Vektoren, die in Koordinaten bzgl.
> > [mm]B_{\IR_3}[/mm] gegeben sind, und Du bekommst das Bild dieser
> > Vektoren unter der Abbildung [mm]\pi[/mm] geliefert in Koordinaten
> > bzgl. [mm]B_{\IR_2}.[/mm]
> >
> > Wenn wir also A' mit [mm]\vektor{1//0//0}_B_{\IR_3}[/mm] füttern,
> > müßten wir [mm]\pi[/mm] (1*[mm]\vektor{1 \\ 0 \\ -9} [/mm]+0*[mm] \vektor{2 \\ 0 \\ 1} [/mm]+0*
> > [mm]\vektor{0 \\ 1 \\ 0}[/mm] herausbekommen - und zwar in
> > Koordinaten bzgl [mm]B_{\IR_2}.[/mm]
> >
> > Rechne doch mal nach, ob A' das tut.
>
Es werden hier die Basiselemente von [mm]B_{\IR_{3}}[/mm] mittels [mm]\pi[/mm] abgebildet und dieses Bild als Linearkombination der Basiselemente von [mm]B_{\IR_{2}}[/mm] dargestellt.
Konkret heisst das:
[mm]\pi\left(1*\vektor{1 \\ 0 \\ -9} +0* \vektor{2 \\ 0 \\ 1} +0*\vektor{0 \\ 1 \\ 0}\right)=\alpha_{11}*\vektor{1 \\ 1}+\alpha_{21}*\vektor{1 \\ -2}[/mm]
[mm]\pi\left(0*\vektor{1 \\ 0 \\ -9} +1* \vektor{2 \\ 0 \\ 1} +0*\vektor{0 \\ 1 \\ 0}\right)=\alpha_{12}*\vektor{1 \\ 1}+\alpha_{22}*\vektor{1 \\ -2}[/mm]
[mm]\pi\left(0*\vektor{1 \\ 0 \\ -9} +0* \vektor{2 \\ 0 \\ 1} +1*\vektor{0 \\ 1 \\ 0}\right)=\alpha_{13}*\vektor{1 \\ 1}+\alpha_{23}*\vektor{1 \\ -2}[/mm]
Die Matrix
[mm]\pmat{\alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23}}[/mm]
ist dann die gesuchte Matrix.
> Kann mir dies jemand noch ein wenig genauer erklären? Da
> wäre ich extrem dankbar.
Gruß
MathePower
|
|
|
|