matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis
Basis < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 Mo 13.07.2009
Autor: Fawkes

Aufgabe
Seien [mm] v_1,...,v_m [/mm] Spaltenvektoren der Länge n über K. Welche der folgenden Aussagen sind dazu äquivalent, dass [mm] v_1,...,v_m [/mm] eine Basis des K-Vektorraums [mm] V_n(K) [/mm] bilden:
a) [mm] v_1,...,v_m [/mm] sind linear unabhängig, und m [mm] \ge [/mm] n.
b) [mm] v_1,...,v_m [/mm] sind linear unabhängig, und m [mm] \le [/mm] n.
c) [mm] v_1,...,v_m [/mm] erzeugen [mm] V_n(K), [/mm] und m [mm] \ge [/mm] n.
d) [mm] v_1,...,v_m [/mm] erzeugen [mm] V_n(K), [/mm] und m [mm] \le [/mm] n.
e) die Matrix mit Spalten [mm] v_1,...,v_m [/mm] hat Rang n.
f) jedes Element von [mm] V_n(K) [/mm] ist eine Linearkombination von [mm] v_1,...,v_m. [/mm]

Hallo,
also bei dieser Multiple Choice Aufgabe hab ich e) und f) angekreuzt. Ist das richtig? Wie immer dank vorweg :)
Gruß Fawkes

        
Bezug
Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Mo 13.07.2009
Autor: angela.h.b.


> also bei dieser Multiple Choice Aufgabe hab ich e) und f)
> angekreuzt. Ist das richtig?

Hallo,

EDIT:ja, das ist richtig.
Das stimmt nicht. s. die nachfolgende Diskussion.

Du übst bloß? oder sind das alles Klausuraufgaben aus einer Klausur? da wird man ja verrückt!

Gruß v. Angela

Bezug
                
Bezug
Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:05 Di 14.07.2009
Autor: Fawkes

ja zum einen übe ich bloß und zum anderen sind es aufgaben aus einer alten klausur, die der prof bei dem ich demnächst ne ziemlich identische klausur schreiben werde so vor nen paar jahren mal gestellt hat.
das dumme an den mc-aufgaben ist nur, dass man nich nur das ankreuzen kann, was man sicher weiß, sondern alles ankreuzen muss was richtig ist damit die aufgabe gewertet wird, naja mal schauen wies so wird....

Bezug
                
Bezug
Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Mi 15.07.2009
Autor: Fawkes

hallo,
also heute hab ich gehört, dass wohl a) und d) als einzige richtig sein sollen und das wird eben auf die äuqivalenz begründet. warum das jetzt stimmt verstehe ich zwar noch nich so ganz, da m ja gleich n sein müsste für a), jedoch impliziert das l.u. das wohl schon und deshalb ist es wohl doch richtig. kp vielleicht steigst du da ja durch und kannst es mir evtl. erklären. danke schonmal
gruß fawkes

Bezug
                        
Bezug
Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:47 Mi 15.07.2009
Autor: angela.h.b.

Hallo,

vielleicht müßtest Du doch mal erklären, was [mm] V_n [/mm] darstellen soll.

Ich bin von einem VR der Dimension n ausgegangen.

Gruß v. Angela

Bezug
                                
Bezug
Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:51 Mi 15.07.2009
Autor: Fawkes

ja wie du schon sagtest ist es der vektorraum über dem körper K mit der dim n. also was es anderes sein soll weiß ich auch nich, nur in der aufgabe steht ja auch schon k-vektorraum also wird unsere def wohl stimmen :)

Bezug
                        
Bezug
Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Mi 15.07.2009
Autor: angela.h.b.


> hallo,
>  also heute hab ich gehört, dass wohl a) und d) als
> einzige richtig sein sollen und das wird eben auf die
> äuqivalenz begründet. warum das jetzt stimmt verstehe ich
> zwar noch nich so ganz, da m ja gleich n sein müsste für
> a), jedoch impliziert das l.u. das wohl schon und deshalb
> ist es wohl doch richtig. kp vielleicht steigst du da ja
> durch und kannst es mir evtl. erklären. danke schonmal
>  gruß fawkes

Hallo,

ja, ich habe gesehen, daß f nicht richtig ist wegen der Äquivalenz. Es gilt nur ==>.

Wenn die [mm] v_i [/mm] eine Basis des [mm] K^n [/mm] sein sollen, dann muß m=n sein.

Richtig wäre dann: [mm] v_1,...v_m [/mm] ist Basis <==> m=n und die [mm] v_i [/mm] sind linear unabhängig.

Wenn n=m ist und der Rang der Matrix =n ist, dann sind die [mm] v_i [/mm] eine Basis. Und umgekehrt.=

Richtig wäre weiter

[mm] v_1,...,v_m [/mm] ist Basis  <==> die [mm] v_i [/mm] erzeugen [mm] V_n [/mm] und n=m.


Nun kannst Du schauen, wie Du das irgendwie mit Deinen [mm] \le [/mm] und [mm] \ge [/mm] in Deckung bringst. Das ist mir zu mühsam heute abend.
Das ist ja schlimmer als "Blendempfindlichkeit nimmt zu/ab".

Gruß v. Angela

Bezug
        
Bezug
Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 09:38 Do 16.07.2009
Autor: angela.h.b.

Moin,

nutzen wir die Gunst der Stunde: ausgeschlafen, und die Hitze konnte ihr zerstörerisches Werk noch nicht beginnen.

> Seien [mm]v_1,...,v_m[/mm] Spaltenvektoren der Länge n über K.
> Welche der folgenden Aussagen sind dazu äquivalent, dass

>A) [mm]v_1,...,v_m[/mm] eine Basis des K-Vektorraums [mm]V_n(K)[/mm] bilden:

>  a) [mm]v_1,...,v_m[/mm] sind linear unabhängig, und m [mm]\ge[/mm] n.

a) ==> A)

Wenn die m Spaltenvektoren des [mm] K^n [/mm] linear unabhängig sind, dann kann m höchstens =n sein, dh. [mm] m\le [/mm] n, und wenn nun gleichzeitig [mm] m\ge [/mm] n gilt haben wir m=n.
Damit hat man n linear unabhängige Spaltenvektoren des [mm] K^n, [/mm] also eine Basis.

A)==> a)

Wenn die  m Spaltenvektoren des [mm] K^n [/mm] eine Basis bilden, dann ist m=n und sie sind linear unabhängig


>  b) [mm]v_1,...,v_m[/mm] sind linear unabhängig, und m [mm]\le[/mm] n.

b) ==> A) gilt nicht, weil man für m<n keine Basis hat.


>  c) [mm]v_1,...,v_m[/mm] erzeugen [mm]V_n(K),[/mm] und m [mm]\ge[/mm] n.

c) ==> A) gilt nicht, denn eine Basis ist ein minimales Erzeugendensystem, so daß man für m>n keine Basis hat.


>  d) [mm]v_1,...,v_m[/mm] erzeugen [mm]V_n(K),[/mm] und m [mm]\le[/mm] n.

d) ==> A)

Wenn die [mm] v_i [/mm] den [mm] K^n [/mm] erzeugen, dann ist [mm] m\ge [/mm] n. Zusammen mit [mm] m\le [/mm] n hat man m=n, also eine Basis.

A) ==> d) Wenn die [mm] v_i [/mm] eine Basis sind, dann  sind sie ein Erzeugendensystem mit m=n.

>  e) die Matrix mit Spalten [mm]v_1,...,v_m[/mm] hat Rang n.

e) ==> a) stimmt für  m>n nicht.


>  f) jedes Element von [mm]V_n(K)[/mm] ist eine Linearkombination von
> [mm]v_1,...,v_m.[/mm]

f) ==> A)  stimmt für  m>n nicht.

So. Das sollte jetzt so richtig sein.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]