matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungBasis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Basis
Basis < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis: Frage
Status: (Frage) beantwortet Status 
Datum: 23:38 Di 31.05.2005
Autor: Chironimus

Ach Verdammt, das sollte eigentlich ins Uni-Algebra Forum. Besteht ne Möglichkeit, das igendwie zu verschieben ?

Hallo, bräuchte mal wieder Hilfe von euch.

Sei U [mm] \subset \IR^{4} [/mm] der durch die Vektoren
  
      w1 = (8,-12,2,0),
      w2 = (-18,36,0,3),
      w3 = (-2,6,1,1)

aufgespannte Untervektorraum. Bestimmen Sie die Basen von U und  [mm] \IR^{4}/U. [/mm]

Bin bis jetzt so vorgegangen. Ich habe eine Matrix aus den Vektoren aufgestellt und hab das Gauss - Eliminationsverfahren angewandt.

Dabei ist der Vektor w3 rausgefallen, da ganze Zeile 0.

Damit bilden doch w1 und w2 eine Basis, oder ?

Mich stört in der Aufgabenstellung der Begriff Basen. Gibt es noch mehr ?

Außerdem hab ich Probleme zu verstehen, wie ich eine Basis bzw. Basen zu [mm] \IR^{4}/U [/mm] angeben kann.

Würde mich über Hilfe freuen.

Gruß Chiro

P.S. Ich habe diese Frage auf keiner anderen Internetseite gestellt.

        
Bezug
Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 00:36 Mi 01.06.2005
Autor: NECO


> Ach Verdammt, das sollte eigentlich ins Uni-Algebra Forum.
> Besteht ne Möglichkeit, das igendwie zu verschieben ?
>  
> Hallo, bräuchte mal wieder Hilfe von euch.
>  
> Sei U [mm]\subset \IR^{4}[/mm] der durch die Vektoren
>    
> w1 = (8,-12,2,0),
>        w2 = (-18,36,0,3),
>        w3 = (-2,6,1,1)
>  
> aufgespannte Untervektorraum. Bestimmen Sie die Basen von U
> und  [mm]\IR^{4}/U.[/mm]
>  
> Bin bis jetzt so vorgegangen. Ich habe eine Matrix aus den
> Vektoren aufgestellt und hab das Gauss -
> Eliminationsverfahren angewandt.
>  
> Dabei ist der Vektor w3 rausgefallen, da ganze Zeile 0.
>  
> Damit bilden doch w1 und w2 eine Basis, oder ?
>  
> Mich stört in der Aufgabenstellung der Begriff Basen. Gibt
> es noch mehr ?
>  
> Außerdem hab ich Probleme zu verstehen, wie ich eine Basis
> bzw. Basen zu [mm]\IR^{4}/U[/mm] angeben kann.
>  

Hallo, Wie ist denn [mm]\IR^{4}/U[/mm] definiert?

Ok du hast schon 2 Linearunabhängige Vektoren gefunden. Also wie du auch gesagt hast, bilden  [mm] w_{1} [/mm] und [mm] w_{2} [/mm] eine Basis vom Unterraum U.

Jetz wei ich nicht wie [mm]\IR^{4}/U[/mm] definiert ist.
Aber wenn du Basis aus [mm] \IR^{4} [/mm] suchst, kannst du die Einheitsvektoren nehmen. [mm] e_{1}, e_{2},e_{3}, e_{4}. [/mm] Die sind auch Linearunabhängig.

Aber nicht alle 6 Vektoren zusammen bilden eine Basis. !!

Bezug
        
Bezug
Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 09:30 Mi 01.06.2005
Autor: Hexe

Also erstmal ja es gibt mehrere Basen für jeden Vektorraum. Je zwei beliebige linear unabhängige Vektoren aus U bilden eine Basis.
Aber in dem Fall ist die mehrzahl wohl nur auf e8ine Basis für U und eine für [mm] \IR^4\ [/mm] U zurückzuführen.
So für die zweite Basis brauchst du jetzt einfach 2 lin unabh. Vektoren die nicht in U liegen, du machst also nichts weiter als die Basis von U zu einer Basis des [mm] \IR^4 [/mm] zu erweitern.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]