Basis < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hey Leute,
ich bin total aufgeschmissen. Ich versuche nun schon seit 5 stunden zu verstehen, was eine Basis ist. Und was die macht. Ich bin schon so weit, dass Linearunabhängige Vektoren, die ein ERzeugendessystem sind eine Basis bilden. Nur leider hilft mir das kein bisschen weiter, weil ich einfach nich verstehe, was dahinter steckt. Vllt kann mir einer mal ganz anschaulich und für dummies wie mich erklären was es mit der Basis und allem drum und dran auf sich hat...
Über konstruktive Anworten freue ich mich und ein Danke schonma um vorraus!!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:03 Mi 09.03.2011 | Autor: | leduart |
Hallo
Du hast einen Vektorraum VR
darin sind unzählige Vektoren.
Dann wählst du eine Anzahl aus mit denen du alle anderen als Linearkombination erzeugen kannst. Dann hast du ein erzeugenden System.
Das kann aber noch viel zu viele Vektoren enthalten , also guckst du ob du mit weniger auskommst. Wenn du das Minimum hast hast du eine Basis.
die minimalzahl von vektoren, die man braucht um alle Vektoren eines VR zu erzeugen heisst seine Dimension.
oder dann umgekehrt, wenn dir jemand die dimension sagt, kennst du die Anzahl der Basisvektoren.
für viele VR gibt es sogenannte Standard Basis, im [mm] R^3 [/mm] ist das etwa (1,0,0) (0,1,0) und (0,0,1)
aber (1,1,1) (0,2,5) und (1,0,7) ist z. bsp auch ne Basis.
Wenn man die Dimension kennt, hier 3 dann bilden je 3 lin. unabh. Vektoren eine Basis.
was das drum und dran ist nach dem du fragst weiss ich nicht.
Klarer? sonst frag nach
Gruss leduart
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 16:44 Do 10.03.2011 | Autor: | JigoroKano |
Hey,
besten Dank. Das bringt doch schonmal Licht ins Dunkel. WIe stelle ich denn fest, ob Vektoren linearunabhängig sind? und wie führe ich einen Basiswechsel durch?
Beste Grüße
Kano
|
|
|
|
|
> Hey,
>
> besten Dank. Das bringt doch schonmal Licht ins Dunkel. WIe
> stelle ich denn fest, ob Vektoren linear unabhängig sind?
> und wie führe ich einen Basiswechsel durch?
>
> Beste Grüße
> Kano
n Vektoren [mm] \vec{v}_1 [/mm] , [mm] \vec{v}_2 [/mm] , ..... , [mm] \vec{v}_n [/mm] sind genau dann linear
unabhängig, wenn aus
[mm] $\summe_{k=1}^{n} a_k*\vec{v}_k\ [/mm] =\ [mm] \vec{0}$ [/mm]
folgt, dass [mm] a_1 [/mm] = [mm] a_2 [/mm] = ..... = [mm] a_n [/mm] = 0 .
LG Al-Chw.
|
|
|
|
|
Hey,
danke für die Antwort Diese Definition, dass [mm] \summe_{i=1}^{n}=a_{i}\vec{v}_{i}=0 [/mm] habe ich auch schon gefunden. Allerdings:
[mm] \vektor{1\\1\\0} [/mm] und [mm] \vektor{2\\2\\0} [/mm] sind linearabhängig (oder?) aber wenn ich sage: [mm] 0*\vektor{1\\1\\0}+0*\vektor{2\\2\\0} [/mm] = 0 , was ja bedeuten würde, dass diese beiden Vektoren linearunabhängig sind. Also das habe ich noch überhaupt nicht drauf...
LG Kano
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:14 Do 10.03.2011 | Autor: | Lippel |
Hallo,
> danke für die Antwort Diese Definition, dass
> [mm]\summe_{i=1}^{n}=a_{i}\vec{v}_{i}=0[/mm] habe ich auch schon
> gefunden. Allerdings:
>
> [mm]\vektor{1\\1\\0}[/mm] und [mm]\vektor{2\\2\\0}[/mm] sind linearabhängig
> (oder?) aber wenn ich sage:
> [mm]0*\vektor{1\\1\\0}+0*\vektor{2\\2\\0}[/mm] = 0 , was ja bedeuten
> würde, dass diese beiden Vektoren linearunabhängig sind.
> Also das habe ich noch überhaupt nicht drauf...
Natürlich kannst du die [mm] $a_i$ [/mm] immer gleich 0 setzen und erhälst so 0. Es ist jedoch die Frage, ob aus [mm] $\summe_i a_i\vec{v}_i=0$ [/mm] notwendig [mm] $a_i=0 \: \forall [/mm] i$ folgt. Das ist in deinem Beispiel nicht der Fall, denn:
[mm]2*\vektor{1\\1\\0}-1*\vektor{2\\2\\0} = 0 [/mm]
LG Lippel
|
|
|
|
|
>
> und wie führe ich einen Basiswechsel durch?
Hallo,
.
Ich habe ja leichte Zweifel, ob Du beim aktuellen Wissenstand schon soweit bist, daß Du über Basiswechsel nachdenken solltest.
Aber wenn: poste eine konkrete Aufgabe, am besten in einem eigenen Thread.
Gruß v. Angela
|
|
|
|