Basis Beweis < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei für [mm] i\in \IN_{0} [/mm] mit i<m
[mm] \pi_{i}: \IK^{m} \to \IK
[/mm]
[mm] \vektor{x_{0} \\ . \\ . \\ x_{m-1} } \mapsto x_{i}
[/mm]
und sei für ein n-Tupel [mm] (i_{0},...,i_{n-1}) [/mm] mit [mm] i_{j}
[mm] \pi_{i_{0},...i_{m-1}}: (\IK^{m})^{n} \to \IK [/mm] ; [mm] v_{j}\in \IK^{m}
[/mm]
[mm] (v_{0},...,v_{n-1})\mapsto \produkt_{j=0}^{n-1}(\pi_{i_{j}}(v_{j}))
[/mm]
Zeigen Sie, dass die [mm] \pi_{i_{0},...,i_{m-1}} [/mm] eine Basis des [mm] Mult_{n}(\IK^{m}) [/mm] bilden.
|
z. z.:
(1) Multilinearität
(2) Lineare Unabhängigkeit
(3) Erzeugendensystem
Ersteres ist ja noch das einfachste, aber wie zur Hölle zeige ich die lineare Unabhängigkeit und dass der die lineare Hülle dieser Biester der ganze VR ist?
Wenn man wenigstens wüsste, wie so eine n-lineare Abbildung im Allgemeinen aussieht, damit man zeigen könnte, dass sie als Linearkombination der [mm] \pi [/mm] ausgedrückt werden kann...
Und bei (2) muss ich irgendwie zeigen, dass es für verschiedene n-Tupel 1 und 2 immer eine Stelle (...) gibt wo [mm] \pi_{1}(...)\not=\alpha*\pi_{2}(...) [/mm] (Wenn ich das richtig verstehe.)
Doch wie stelle ich das an?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:06 Mi 20.01.2010 | Autor: | rainerS |
Hallo!
> Sei für [mm]i\in \IN_{0}[/mm] mit i<m
> [mm]\pi_{i}: \IK^{m} \to \IK[/mm]
> [mm]\vektor{x_{0} \\ . \\ . \\ x_{m-1} } \mapsto x_{i}[/mm]
>
> und sei für ein n-Tupel [mm](i_{0},...,i_{n-1})[/mm] mit [mm]i_{j}
> [mm]\pi_{i_{0},...i_{m-1}}: (\IK^{m})^{n} \to \IK[/mm] ; [mm]v_{j}\in \IK^{m}[/mm]
>
> [mm](v_{0},...,v_{n-1})\mapsto \produkt_{j=0}^{n-1}(\pi_{i_{j}}(v_{j}))[/mm]
>
> Zeigen Sie, dass die [mm]\pi_{i_{0},...,i_{m-1}}[/mm] eine Basis des
> [mm]Mult_{n}(\IK^{m})[/mm] bilden.
>
> z. z.:
> (1) Multilinearität
> (2) Lineare Unabhängigkeit
> (3) Erzeugendensystem
>
> Ersteres ist ja noch das einfachste, aber wie zur Hölle
> zeige ich die lineare Unabhängigkeit und dass der die
> lineare Hülle dieser Biester der ganze VR ist?
> Wenn man wenigstens wüsste, wie so eine n-lineare
> Abbildung im Allgemeinen aussieht, damit man zeigen
> könnte, dass sie als Linearkombination der [mm]\pi[/mm]
> ausgedrückt werden kann...
> Und bei (2) muss ich irgendwie zeigen, dass es für
> verschiedene n-Tupel 1 und 2 immer eine Stelle (...) gibt
> wo [mm]\pi_{1}(...)\not=\alpha*\pi_{2}(...)[/mm] (Wenn ich das
> richtig verstehe.)
> Doch wie stelle ich das an?
Schreib dir die Definition der [mm] $\pi_{i_{0},...i_{m-1}}$ [/mm] explizit hin: wenn [mm] $v_j$ [/mm] die Form
[mm] v_j = \vektor{v_{j,0} \\ . \\ . \\ v_{j,m-1} } [/mm]
hat, so ist
[mm]\pi_{i_{0},...i_{m-1}}((v_{0},...,v_{n-1})) = \produkt_{j=0}^{n-1}v_{j,i_j} [/mm] ,
also die [mm] $i_0$-te [/mm] Komponente von [mm] $v_0$, [/mm] multipliziert mit der [mm] $i_1$-ten [/mm] Komponente von [mm] $v_1$, [/mm] usw.
Wenn ich die Komponenten der [mm] $v_j$ [/mm] als [mm] $m\times [/mm] n$-Matrix schreibe:
[mm] \begin{pmatrix} v_{0,0} & v_{1,0} & \dots & v_{n-1,0} \\
v_{0,1} & v_{1,1} & \dots & v_{n-1,1} \\
\hdotsfor{4} \\
v_{0,m-1} & v_{1,m-1}& \dots & v_{n-1,m-1} \end{pmatrix} [/mm],
so wählt [mm] $\pi_{i_{0},...i_{m-1}}$ [/mm] aus jeder Spalte genau einen Faktor aus. Es sind immer genau $n$ Faktoren, und wenn sich die Indizes in [mm] $\pi_{i_{0},...i_{m-1}}$ [/mm] unterscheiden, dann unterscheiden sich auch die Faktoren im Produkt.
Viele Grüße
Rainer
|
|
|
|
|
Ich verstehe noch nicht ganz, wie man das mit dem Erzeugendensystem zeigt. Aber ich glaube das mit der linearen Unabhängigkeit hab ich jetzt.
Sei [mm] (i_{0},...,i_{n-1}) [/mm] ein n-Tupel natürlicher Zahlen kleiner m und sei [mm] (v_{0},...,v_{n-1}) [/mm] ein n-Tupel von Vektoren aus [mm] \IK^{m} [/mm] derart, dass [mm] v_{a} [/mm] an der Stelle [mm] i_{a} [/mm] eine 1 hat, sonst Nullen. Dann gilt:
[mm] \pi_{i_{0},...,i_{n-1}}(v_{0},...,v_{n-1})=1 [/mm] und [mm] \pi=0 [/mm] für alle anderen n-Tupel natürlicher Zahlen <m. Daher sind die [mm] \pi [/mm] linear unabhängig.
Aber dass sie den [mm] Mult_{n}(\IK^{m}) [/mm] krieg ich nicht gezeigt... Wie geht das denn?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:28 Mi 20.01.2010 | Autor: | rainerS |
Hallo!
> Ich verstehe noch nicht ganz, wie man das mit dem
> Erzeugendensystem zeigt. Aber ich glaube das mit der
> linearen Unabhängigkeit hab ich jetzt.
> Sei [mm](i_{0},...,i_{n-1})[/mm] ein n-Tupel natürlicher Zahlen
> kleiner m und sei [mm](v_{0},...,v_{n-1})[/mm] ein n-Tupel von
> Vektoren aus [mm]\IK^{m}[/mm] derart, dass [mm]v_{a}[/mm] an der Stelle [mm]i_{a}[/mm]
> eine 1 hat, sonst Nullen. Dann gilt:
> [mm]\pi_{i_{0},...,i_{n-1}}(v_{0},...,v_{n-1})=1[/mm] und [mm]\pi=0[/mm] für
> alle anderen n-Tupel natürlicher Zahlen <m. Daher sind die
> [mm]\pi[/mm] linear unabhängig.
> Aber dass sie den [mm]Mult_{n}(\IK^{m})[/mm] krieg ich nicht
> gezeigt... Wie geht das denn?
Du könntest zeigen, dass die Anzahl der linear unabhängigen [mm] $\pi$'s [/mm] gleich der Dimension des [mm]Mult_{n}(\IK^{m})[/mm] ist.
Oder du nimmst dir ein beliebiges Element [mm] $x\in Mult_{n}(\IK^{m})$ [/mm] und gibst eine explizite Darstellung als Summe der [mm] $\pi$'s [/mm] an.
Viele Grüße
Rainer
|
|
|
|
|
> Du könntest zeigen, dass die Anzahl der linear
> unabhängigen [mm]\pi[/mm]'s gleich der Dimension des
> [mm]Mult_{n}(\IK^{m})[/mm] ist.
Wir sollen gerade zeigen, dass die [mm] \pi [/mm] eine Basis bilden, um zu beweisen, dass die Dimension [mm] m^{n} [/mm] ist.
> Oder du nimmst dir ein beliebiges Element [mm]x\in Mult_{n}(\IK^{m})[/mm]
> und gibst eine explizite Darstellung als Summe der [mm]\pi[/mm]'s
> an.
Kann man denn so eine explizite Darstellung angeben? Ich meine, ich habe mir auch schon überlegt, dass man das machen müsste, aber wie sieht denn ein allgemeines Element aus dem [mm] Mult_{n}(\IK^{m}) [/mm] aus? Gibt es überhaupt eine allgemeine Darstellung so einer n-Linearform?
> Viele Grüße
> Rainer
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:46 Mi 20.01.2010 | Autor: | rainerS |
Hallo!
> > Du könntest zeigen, dass die Anzahl der linear
> > unabhängigen [mm]\pi[/mm]'s gleich der Dimension des
> > [mm]Mult_{n}(\IK^{m})[/mm] ist.
> Wir sollen gerade zeigen, dass die [mm]\pi[/mm] eine Basis bilden,
> um zu beweisen, dass die Dimension [mm]m^{n}[/mm] ist.
>
> > Oder du nimmst dir ein beliebiges Element [mm]x\in Mult_{n}(\IK^{m})[/mm]
> > und gibst eine explizite Darstellung als Summe der [mm]\pi[/mm]'s
> > an.
>
> Kann man denn so eine explizite Darstellung angeben? Ich
> meine, ich habe mir auch schon überlegt, dass man das
> machen müsste, aber wie sieht denn ein allgemeines Element
> aus dem [mm]Mult_{n}(\IK^{m})[/mm] aus? Gibt es überhaupt eine
> allgemeine Darstellung so einer n-Linearform?
Du hast doch vorhin die Vektoren [mm] $v_a$ [/mm] definiert, bei denen nur eine Komponente [mm] $v_{a,i_a}=1$ [/mm] ist. Schreibe dir n Vektoren [mm] $w_i$ [/mm] als Linearkombination dieser [mm] $v_a$'s [/mm] hin und wende deine n-Linearform darauf an.
Viele Grüße
Rainer
|
|
|
|