matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBasis angeben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Basis angeben
Basis angeben < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis angeben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Sa 05.01.2008
Autor: Stefan235

Aufgabe
Wir betrachten im Vektorraum [mm] \IR^2 [/mm] den Unterraum G = [mm] \{(x_{1},x_{2} \in \IR^2 | x_{1}+x_{2} = 0 \} [/mm]
a) Geben Sie eine Basis von G an.

Hallo,
irgendwie war wohl Weihnachten und Silvester etwas zu viel für mich.

Eine Basis in o.g. Aufgabe müsste (1,-1) sein. Aber wie kommt man den da drauf. Ich kann das ja nicht einfach hinschreiben oder?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Basis angeben: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Sa 05.01.2008
Autor: steppenhahn

Die Menge verdeutlicht ja nichts anderes als ein x aus R und dazu sein additiv inverses.

Man kann ja x1 + x2 = 0 umformen in
x1 = -x2 und erhält somit eine lineare Funktion.
Im Graphen sieht das so aus:

o       |
  o     |
    o   |
      o |
-----------------
        | o
        |   o
        |     o
        |       o

Eine Basis ist ein Erzeugendensystem (und linear unahängig). Was ist das Erzeugendensystem einer Gerade? Natürlich ein Vektor, der genau ihre Richtung "anzeigt". Das kann zum Beispiel der Vektor (1,-1), aber auch (2,-2), ... sein.

Du musst dann aber noch zeigen, dass die gefundene Basis linear unabhängig ist, also dass für

0 = [mm] \lambda_{1}*v_{1} [/mm] + [mm] \lambda_{2}*v_{2} [/mm]

mit v = [mm] \vektor{v_{1} \\ v_{2}} [/mm] = [mm] \vektor{1 \\ -1} [/mm] folgt, dass [mm] \lambda_{1} [/mm] = [mm] \lambda_{2} [/mm] = 0 ist.

Bezug
                
Bezug
Basis angeben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 Sa 05.01.2008
Autor: Stefan235

Aufgabe
Es sei f: [mm] \IR^2 \to \IR^2 [/mm] die lienare Abbildung, die einen Punkt zuerst an G und dann an der [mm] x_{1}-Achse [/mm] spiegelt. Bestimmen Sie bezüglich der kanonischen Basis des [mm] \IR^2 [/mm] die Matrix S, die f beschreibt.

Hallo,
danke für die schnelle Antwort. Deine Erklärung hat mir meinen Verdacht anschaulich bestätigt.
Zu der Aufgabe gibt es aber noch eine zweite Teilaufgabe. Hierbei muss ich ja wohl den Einheitsvektor (1,0) verwenden, der ja die [mm] x_{1}-Achse [/mm] beschreibt. Aber wie soll ich daraus eine Matrix bilden. Oder genügt es, das einfach nur untereinander zu schreiben?

Bezug
                        
Bezug
Basis angeben: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Sa 05.01.2008
Autor: steppenhahn

Zunächst bestimmt man die beiden Abbildungen, die eigentlich gefordert sind.

Die erste Abbildung (wir nennen sie g(x)) spiegelt einen Punkt P(x,y) an der Geraden -x, die wir oben bestimmt haben. Sieht man sich das im Graphen an, kann man schnell herausfinden, was dann mit den Koordinaten des Punkts P passiert:

-die beiden Koordinaten x und y werden vertauscht und "negativiert", also:
[mm] \vektor{x \\ y} \overbrace{\mapsto}^{g} \vektor{-y \\ -x}. [/mm]

Nun müssen wir diese Abbildung in eine Matrix A überführen, die bei Multiplikation mit P genau dasselbe erledigt, d.h. sie muss folgendes erledigen:

AP = [mm] A\vektor{x \\ y} [/mm] = [mm] \vektor{-y \\ -x} [/mm]

Dazu führt man die lineare Abbildung mit den Koordinaten-Einheitsvektoren von [mm] R^{2} [/mm] aus [mm] (\vektor{1 \\ 0} [/mm] und [mm] \vektor{0 \\ 1}): [/mm]

[mm] \vektor{1 \\ 0} \overbrace{\mapsto}^{g} \vektor{0 \\ -1}. [/mm]
[mm] \vektor{0 \\ 1} \overbrace{\mapsto}^{g} \vektor{-1 \\ 0}. [/mm]

Nun kann man A einfach durch zusammenfassen der erhaltenen Vektoren bilden:

A = [mm] \pmat{g(\vektor{1 \\ 0}) & g(\vektor{0 \\ 1})} [/mm]
= [mm] \pmat{0 & -1 \\ -1 & 0} [/mm]

Die gefundene Matrix A erledigt nun bei Multiplikation mit einem beliebigem Punkt P dasselbe wie wenn man P in die lineare Abbildung g einsetzen würde.

Nun müssen wir die zweite Matrix B bestimmen. Zuvor jedoch die dazugehörige lineare Abbildung h(x).
Was passiert, wenn man einen Punkt P an der x-Achse spiegelt? Das Vorzeichen der y-Koordinate wird umgedreht, also "negativiert", d.h.

[mm] \vektor{x \\ y} \overbrace{\mapsto}^{h} \vektor{x \\ -y}. [/mm]

Die dazugehörige Matrix B bestimmen wir mit einsetzen der Einheitsvektoren:

[mm] \vektor{1 \\ 0} \overbrace{\mapsto}^{h} \vektor{1 \\ 0}. [/mm]
[mm] \vektor{0 \\ 1} \overbrace{\mapsto}^{h} \vektor{0 \\ -1}. [/mm]

--> B = [mm] \pmat{1 & 0 \\ 0 & -1} [/mm]

Auch B erfüllt nun dieselbe Funktion wie die lineare Abbildung h.

Im grunde wird f in der Aufgabenstellung ja als Hintereinanderausführung von g und h beschrieben. Der Punkt wird erst gespiegelt an der Geraden (also g(P)) und dann gespiegelt an der x-Achse (also h(g(P))).

Bei Matrizen ist diese Hintereinanderausführung die Multiplikation, unsere gesuchte Matrix ist also BA, also
BA = [mm] \pmat{ 1 & 0 \\ 0 & -1 }\pmat{ 0 & -1 \\ -1 & 0 } [/mm]
= [mm] \pmat{ 0 & -1 \\ 1 & 0 } [/mm] = C.

Diese Matrix C ist bei der Aufgabenstellung gesucht.
(Man hätte übrigens gleich die lineare Abbildung für beide Operation g und h bestimmen können und erst dann die Matrix bilden, dann wäre es schneller gegangen)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]