matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasis aus Eigenvek. von End(V)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis aus Eigenvek. von End(V)
Basis aus Eigenvek. von End(V) < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis aus Eigenvek. von End(V): Idee
Status: (Frage) beantwortet Status 
Datum: 17:17 Mi 15.05.2013
Autor: woohoo

Aufgabe
Zeigen Sie: Ist K ein Koerper und V ein endlichdimensionaler K-Vektorraum, M [mm] \subseteq [/mm] End(V) eine kommutative Unteralgebra, so dass alle Elemente von M diagonalisierbar sind, so besitzt V eine Basis aus simultanen Eigenvektoren der Elemente von M.

Hallo,

Leider weiss ich nicht so genau was man hier fuer einen Ansatz waehlen sollte. Ich verstehe nicht was mit "...Basis aus simultanen Eigenvektoren der Elemente von M" gemeint ist.

Soll man eine Basis fuer V finden, die aus Eigenvektoren [mm] v_i [/mm] besteht wobei diese [mm] v_i [/mm] Eigenwerte von ALLEN elementen in End(V) sind? Das ergibt fuer mich irgendwie keinen Sinn.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Basis aus Eigenvek. von End(V): Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Mi 15.05.2013
Autor: fred97


> Zeigen Sie: Ist K ein Koerper und V ein
> endlichdimensionaler K-Vektorraum, M [mm]\subseteq[/mm] End(V) eine
> kommutative Unteralgebra, so dass alle Elemente von M
> diagonalisierbar sind, so besitzt V eine Basis aus
> simultanen Eigenvektoren der Elemente von M.
>  Hallo,
>
> Leider weiss ich nicht so genau was man hier fuer einen
> Ansatz waehlen sollte. Ich verstehe nicht was mit "...Basis
> aus simultanen Eigenvektoren der Elemente von M" gemeint
> ist.
>  
> Soll man eine Basis fuer V finden, die aus Eigenvektoren
> [mm]v_i[/mm] besteht wobei diese [mm]v_i[/mm] Eigenwerte von ALLEN elementen
> in End(V) sind? Das ergibt fuer mich irgendwie keinen
> Sinn.

Dieser Satz hat auch keinerlei Sinn !

Sei dim(V)=n. Du sollst zeigen: es gibt eine Basis [mm] b_1,...,b_n [/mm] von V mit der Eigenschaft:

      ist [mm] \phi \in [/mm] M, so sind alle [mm] b_1,...,b_n [/mm] Eigenvektoren von [mm] \phi. [/mm]

FRED


>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>  


Bezug
                
Bezug
Basis aus Eigenvek. von End(V): Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:05 Do 16.05.2013
Autor: woohoo

Ok,

Da fuer f [mm] \in [/mm] M gilt, dass f diagonalisierbar ist, bilden die Eigenvektoren einen Basis von V. Wie genau kann ich jetzt zeigen, dass ein anderes g [mm] \in [/mm] M die selben Eigenvektoren hat (das ist doch was ich zeigen muss glaube ich)?

Bezug
                        
Bezug
Basis aus Eigenvek. von End(V): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 So 19.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]