Basis aus Eigenvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:00 Di 12.08.2008 | Autor: | bigalow |
Aufgabe | Aufgabe:
[Dateianhang nicht öffentlich] |
Die Berechnung der Eigenwerte, Eigenräume und der Abbildung [mm] \phi [/mm] zur Basis F ist mir klar und stimmt auch mit der Musterlösung, die mir vorliegt, überein. Ich habe aber nicht verstanden, warum ein Vektor [mm] f_2 [/mm] der [mm] (A-\lambda_1*E_3 )f_2 [/mm] = [mm] f_1 [/mm] erfüllt, orthogonal zu [mm] f_1 [/mm] und [mm] f_3 [/mm] und normiert ist.
Besten Dank für eure Antworten!
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
> Aufgabe:
> [Dateianhang nicht öffentlich]
> Die Berechnung der Eigenwerte, Eigenräume und der
> Abbildung [mm]\phi[/mm] zur Basis F ist mir klar und stimmt auch mit
> der Musterlösung, die mir vorliegt, überein. Ich habe aber
> nicht verstanden, warum ein Vektor [mm]f_2[/mm] der [mm](A-\lambda_1*E_3 )f_2[/mm]
> = [mm]f_1[/mm] erfüllt, orthogonal zu [mm]f_1[/mm] und [mm]f_3[/mm] und normiert ist.
Dies verlangt auch niemand: aber es mag sich beim Lösen der Aufgabe so ergeben. Vielleicht fragst Du eigentlich nach einem "tieferen" Grund, weshalb das Ergebnis diese speziellen Eigenschaften hat?
Sicher ist immerhin, dass die Eigenräume zu [mm] $\lambda_1$ [/mm] und [mm] $\lambda_2$ [/mm] zueinander orthogonal sind: dies müsste aber im allgemeinen Fall nicht sein. [mm] $f_2$ [/mm] soll offenbar ein wie [mm] $f_1$ [/mm] im Eigenraum zum Eigenwert [mm] $\lambda_1$ [/mm] liegender Vektor sein, dieser Eigenwert hat algebraische Vielfachheit 2 aber nur geometrische Vielfachheit 1. Es wird nun verlangt, dass [mm] $f_{1,2,3}$ [/mm] eine Basis bilden (also linear-unabhängig sind: was für [mm] $f_1$ [/mm] und [mm] $f_3$ [/mm] sicher gilt, weil es sich um Eigenvektoren zu verschiedenen Eigenwerten handelt) und dass [mm] $(A-\lambda_1 E_3)f_2=f_1$ [/mm] ist. Aus diesen Angaben musst Du einfach [mm] $f_2$ [/mm] zu bestimmen suchen, das ist alles.
Ich denke, der Prof. bereitet euch mit dieser Aufgabe schon etwas auf die "Jordansche Normalform" vor.
|
|
|
|