matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBasis der Haupträume bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Basis der Haupträume bestimmen
Basis der Haupträume bestimmen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis der Haupträume bestimmen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:06 Do 30.11.2023
Autor: Euler123

Aufgabe
Gegeben sei die Matrix

[mm] B=\left(\begin{array}{cccccc} 2 & 0 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & -3 \\ 0 & 0 & 2 & 0 & -1 & 2 \\ 0 & 0 & 0 & -3 & 1 & 0 \\ 0 & 0 & 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 \end{array}\right) [/mm] .

Berechne jeweils eine Basis der Haupträume [mm] V_{\varphi}(2), V_{\varphi}(-3) [/mm]  bzw. [mm] V_{\varphi}(6) [/mm] von [mm] \varphi=\varphi_{B}. [/mm] Entspricht diese Basis der Situation in 2.3.7?

2.3.7: Seien k verschiedene Hauptvektoren [mm] w_{1}, \ldots, w_{k} [/mm] von [mm] \varphi [/mm] zum Eigenwert [mm] \lambda [/mm] mit Stufen [mm] m_{1} \geq m_{2} \geq \ldots \geq m_{k} \geq [/mm] 1 derart gegeben, dass die Vektoren [mm] (\varphi-\lambda \text [/mm] { id [mm] })^{m_{j}-1}\left(w_{j}\right), [/mm] j [mm] \in\{1, \ldots, k\} [/mm] genau k linear unabhängige Vektoren sind. Dann sind die Vektoren

[mm] v_{j i}:=(\varphi-\lambda \mathrm{id})^{m_{j}-i}\left(w_{j}\right) \text [/mm] { mit } j [mm] \in\{1, \ldots, k\}, [/mm] i [mm] \in\left\{1, \ldots, m_{j}\right\} [/mm]

verschieden und linear unabhängig

Stimmen meine Überlegungen zu dieser Aufgabe!?

Das charakteristische Polynom lautet [mm] (λ-6)(λ-2)^{3}(λ+3)^{2}. [/mm] Daraus ergeben sich die drei Eigenwerte 6, 2 und -3, wobei 2 dreimal und -3 zweimal vorkommt.

Die Basen (und damit die Eigenvektoren lauten):
[mm] \left(\begin{array}{c}\frac{1}{8} \\ \frac{-5}{8} \\ \frac{1}{2} \\ 0 \\ 0 \\ 1\end{array}\right), [/mm] eigenwert [mm] \lambda_{1}=6 [/mm]
[mm] \left(\begin{array}{c}\frac{-1}{5} \\ 0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right), [/mm] eigenwert [mm] \lambda_{3}=-3 [/mm]
[mm] \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, [/mm] eigenwert [mm] \lambda_{2}=2 [/mm]

Da der Eigenwert [mm] \lambda_{1}=6 [/mm] eine algebraische Vielfachheit von 1 und eine geometrische Vielfachheit von 1 hat, ist [mm] m_{1}=1 [/mm] für diesen Eigenwert.
Der Eigenwert [mm] \lambda_{2}=2 [/mm] hat eine algebraische Vielfachheit von 3 (dreifach) und eine geometrische Vielfachheit von 1 (einfach), daher ist [mm] m_{2}=1 [/mm] für diesen Eigenwert.
Der Eigenwert [mm] \lambda_{3}=-3 [/mm] hat eine algebraische Vielfachheit von 2 (zweifach) und eine geometrische Vielfachheit von 2 (zweifach), daher ist [mm] m_{3}=2 [/mm] für diesen Eigenwert.

Für [mm] \lambda_{1}=6 [/mm] und [mm] w_{1}=v_{1}: [/mm]
[mm] (\varphi-6 \cdot \mathrm{id})^{m_{1}-1}\left(v_{1}\right)=(\varphi-6 \cdot \mathrm{id})^{0}\left(v_{1}\right)=v_{1}. [/mm] Da [mm] v_{1} [/mm] bereits ein Eigenvektor ist, ist klar, dass dieser Vektor linear unabhängig ist.

Für [mm] \lambda_{2}=2 [/mm] und [mm] w_{2}=v_{2}: [/mm]
[mm] (\varphi-2 \cdot \mathrm{id})^{m_{2}-1}\left(v_{2}\right)=(\varphi-2 \cdot \mathrm{id})^{0}\left(v_{2}\right)=v_{2}. [/mm] Da [mm] v_{2} [/mm] ebenfalls ein Eigenvektor ist, ist auch dieser Vektor linear unabhängig.

Für [mm] \lambda_{3}=-3 [/mm] und [mm] w_{3}=v_{3}: [/mm]
[mm] (\varphi+3 \cdot \mathrm{id})^{m_{3}-1}\left(v_{3}\right)=(\varphi+3 \cdot \mathrm{id})^{1}\left(v_{3}\right)=(B+3 I)\left(v_{3}\right)=0. [/mm] Hier haben das Problem, dass das Ergebnis 0 ist und somit nicht linear unabhängig von [mm] \( v_{3} \) [/mm] ist.

Somit ist 2.3.7 nicht erfüllt??? - stimmt das so????

Ich habe diese Frage in keinem anderen Forum gestellt!

        
Bezug
Basis der Haupträume bestimmen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 So 03.12.2023
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]