matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesBasis des Bilds
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Basis des Bilds
Basis des Bilds < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis des Bilds: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Sa 21.11.2009
Autor: blackylk

Aufgabe
A= [mm] \begin{pmatrix} 1 0 1 1 \\ 2 0 2 2 \\ 1 1 1 0 \end{pmatrix} [/mm]

i) Bestimmen Sie den Rang von A
ii) Geben Sie eine Basis des Bilds von A an
iii)Geben Sie eine Orthonormalbasis des Kerns von A an


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
zu i) Den Rank der Matrix zu bestimmen war nicht schwer.

Ich schaue ob du die Spalten und Zeilenvektoren lin. unabhängig sind.
A= [mm] \begin{pmatrix} 1 0 1 1 \\ 2 0 2 2 \\ 1 1 1 0 \end{pmatrix} [/mm]
=>A= [mm] \begin{pmatrix} 1 0 1 1 \\ 0 0 0 0 \\ 1 1 1 0 \end{pmatrix} [/mm]
A= [mm] \begin{pmatrix} 1 0 1 1 \\ 1 1 1 0 \end{pmatrix} [/mm]
A= [mm] \begin{pmatrix} 1 0 1 \\ 1 1 0 \end{pmatrix} [/mm]

Raus kommt eine Matrix mit den Rang von 2. Ich denke mal das ich das gelöst hab.

zu ii) Ich weiß ehrlich nicht was mit "Bild von A" gemeint ist.
         Mit Basis wir das Erzeugersystem gemeint glaube ich. Ich würde sagen, dass das die Vektoren  a=1011 und b=1110 sind.

zu iii) Ich weiß wie ich mit den Gram -Schmidt verfahren die Orhtonormalbasis bilde, wenn ich Spanvektoren gegeben habe, hier sind aber keine angegeben. Ich hab was zur iii) Lösung versuch ich morgen zu posten

fehlt nur noch die ii)


        
Bezug
Basis des Bilds: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Sa 21.11.2009
Autor: steppenhahn

Hallo!

> A= [mm]\begin{pmatrix} 1 0 1 1 \\ 2 0 2 2 \\ 1 1 1 0 \end{pmatrix}[/mm]
>  
> i) Bestimmen Sie den Rang von A
>  ii) Geben Sie eine Basis des Bilds von A an
>  iii)Geben Sie eine Orthonormalbasis des Kerns von A an

Ich nehme jetzt mal an, du meintest eigentlich die Matrix

$A = [mm] \begin{pmatrix} 1 & 0 &1 &1 \\ 2 &0& 2 &2 \\ 1& 1 &1 &0 \end{pmatrix}$, [/mm]

die nicht nur aus einer Spalte besteht.

>  zu i) Den Rank der Matrix zu bestimmen war nicht schwer.
>  
> Ich schaue ob du die Spalten und Zeilenvektoren lin.
> unabhängig sind.
>  A= [mm]\begin{pmatrix} 1 0 1 1 \\ 2 0 2 2 \\ 1 1 1 0 \end{pmatrix}[/mm]
>  
> =>A= [mm]\begin{pmatrix} 1 0 1 1 \\ 0 0 0 0 \\ 1 1 1 0 \end{pmatrix}[/mm]
>  
> A= [mm]\begin{pmatrix} 1 0 1 1 \\ 1 1 1 0 \end{pmatrix}[/mm]
>  A=
> [mm]\begin{pmatrix} 1 0 1 \\ 1 1 0 \end{pmatrix}[/mm]
>  
> Raus kommt eine Matrix mit den Rang von 2. Ich denke mal
> das ich das gelöst hab.

Die Schreibweise ist zwar etwas seltsam (also die Matrix immer kleiner zu machen), aber wenn ihr das so gelernt habt, ist das okay. Dein Ergebnis stimmt, der Rang ist 2.

> zu ii) Ich weiß ehrlich nicht was mit "Bild von A" gemeint
> ist.
>           Mit Basis wir das Erzeugersystem gemeint glaube
> ich. Ich würde sagen, dass das die Vektoren  a=1011 und
> b=1110 sind.

Mit "Bild von A" sind die Menge der Vektoren, die entstehen können, wenn ich A mit einem Vektor aus [mm] \IR^{4} [/mm] multipliziere (ich vermute mal, dass ihr hier im [mm] \IR^{4} [/mm] arbeitet).

Mathematisch:

$Bild(A) = [mm] \left\{v=\vektor{v_{1}\\v_{2}\\v_{3}}\in\IR^{3}\Bigg|\exists x =\vektor{x_{1}\\x_{2}\\x_{3}\\x_{4}}\in\IR^{4}: A*x = v\right\}$ [/mm]

Wichtig: Da A nur 3 Zeilen hat, haben die Vektoren aus dem Bild von A nur drei Komponenten.
Praktischweise ist ein Erzeugendensystem des Bildes direkt durch die einzelnen Spalten von A gegeben, du musst nun nur noch eine linear unabhängige Teilmenge der Spaltenvektoren von A finden, die trotzdem dasselbe erzeugt wie alle 4 Spalten-Vektoren zusammen.

> zu iii) Ich weiß wie ich mit den Gram -Schmidt verfahren
> die Orhtonormalbasis bilde, wenn ich Spanvektoren gegeben
> habe, hier sind aber keine angegeben. Ich hab was zur iii)
> Lösung versuch ich morgen zu posten

Naja - du wirst erstmal den Kern von A bestimmen müssen. D.h. bestimme die Menge der [mm] x\in\IR^{4} [/mm] für die gilt:

A*x= [mm] \vektor{0\\0\\0} [/mm]

Das entspricht dem Lösen eines LGS. Dabei erhältst du eine Menge von Vektoren, von der in der Regel sehr einfach eine Basis zu bestimmen ist. Dann das Gram-Schmidt-Verfahren anwenden.

Grüße,
Stefan

Bezug
                
Bezug
Basis des Bilds: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 So 22.11.2009
Autor: blackylk

"du musst nun nur noch eine linear unabhängige Teilmenge der Spaltenvektoren von A finden, die trotzdem dasselbe erzeugt wie alle 4 Spalten-Vektoren zusammen."


Ich stehe gerade eben auf den Schlauch. Einen lin. unabhängige Menge zu finden ist  nicht schwer, nur eine lin. unabhängige Menge zu finden, die dasselbe erzeugt wie alle 4 Spalten- Vektoren zusammen schon. Gibt es dafür ein Verfahren ?


Bezug
                        
Bezug
Basis des Bilds: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 So 22.11.2009
Autor: steppenhahn

Hallo blackylk,

> "du musst nun nur noch eine linear unabhängige Teilmenge
> der Spaltenvektoren von A finden, die trotzdem dasselbe
> erzeugt wie alle 4 Spalten-Vektoren zusammen."
>  
> Ich stehe gerade eben auf den Schlauch. Einen lin.
> unabhängige Menge zu finden ist  nicht schwer, nur eine
> lin. unabhängige Menge zu finden, die dasselbe erzeugt wie
> alle 4 Spalten- Vektoren zusammen schon. Gibt es dafür ein
> Verfahren ?

Es ist fast genauso wie bei der Rangbestimmung: Du nimmst dir die Matrix

$ A = [mm] \begin{pmatrix} 1 & 0 &1 &1 \\ 2 &0& 2 &2 \\ 1& 1 &1 &0 \end{pmatrix} [/mm] $

und nun bestimmst du eben mal den Rang, indem du Spaltenumformungen durchführst:

$ [mm] \begin{pmatrix} 1 & 0 &1 &1 \\ 2 &0& 2 &2 \\ 1& 1 &1 &0 \end{pmatrix} \to \begin{pmatrix} 1 & 0 &0 &1 \\ 2 &0& 0 &2 \\ 1& 1 &0 &0 \end{pmatrix} \to \begin{pmatrix} 0 & 0 &0 &1 \\0 &0& 0 &2 \\ 0& 1 &0 &0 \end{pmatrix}$ [/mm]

Voila, da ist eine Basis des Bildraums:

[mm] \left(\vektor{0\\0\\1},\vektor{1\\2\\0}\right). [/mm]

Grüße,
Stefan

Bezug
                                
Bezug
Basis des Bilds: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 So 22.11.2009
Autor: blackylk

Cool danke, hätte nicht gedacht das das so einfach ist.

Jetzt nur noch eine klitze kleine Frage zu iii)
Ich hab die zweite Zeile aus A weggelassen, da sie ja lin. abhängig ist. Danach sieht meine Matrix so aus.

[mm] \begin{pmatrix} 1 & 0 &1 &1 \\ 1& 1 &1 &0 \end{pmatrix} [/mm]

Jetzt bestimme ich die Basis des Kern, indem ich das LGS der Matrix Ax=0 löse wie du schon gesagt hast.
Ich hab 2 Gleichungen und 4 unbekannte. Also kann ich 2 unbekannte frei wählen.

1.) x1      +x3+x4=0
2.) x1+x2+x3      =0

x1= a  und x2=b

Wenn ich die Gleichung löse kommt bei mir sowas raus:
x3=-a-b
x4=b

x=  [mm] \begin{pmatrix} x1 \\ x2 \\ x3 \\x4 \end{pmatrix} [/mm]

[mm] =\begin{pmatrix} a \\ b \\ -a-b \\b \end{pmatrix} [/mm]

[mm] =a*\begin{pmatrix} 1 \\ 0 \\ -1 \\0 \end{pmatrix} [/mm] +  [mm] b*\begin{pmatrix} 0 \\ 1 \\ -1 \\1 \end{pmatrix} [/mm]

Jetzt benutz ich die beiden Vektoren die rausgekommen sind als mein Spann und kann eigentlich das Gram-Schmidt verfahren benutzen. Hoffe das ich das ganze soweit richtig verstanden habe.

Danke nochmal.

mfg blacky



Bezug
                                        
Bezug
Basis des Bilds: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 So 22.11.2009
Autor: steppenhahn

Hallo blackylk,

> Jetzt nur noch eine klitze kleine Frage zu iii)
>  Ich hab die zweite Zeile aus A weggelassen, da sie ja lin.
> abhängig ist. Danach sieht meine Matrix so aus.
>  
> [mm]\begin{pmatrix} 1 & 0 &1 &1 \\ 1& 1 &1 &0 \end{pmatrix}[/mm]
>
> Jetzt bestimme ich die Basis des Kern, indem ich das LGS
> der Matrix Ax=0 löse wie du schon gesagt hast.
>  Ich hab 2 Gleichungen und 4 unbekannte. Also kann ich 2
> unbekannte frei wählen.
>  
> 1.) x1      +x3+x4=0
>  2.) x1+x2+x3      =0
>  
> x1= a  und x2=b
>  
> Wenn ich die Gleichung löse kommt bei mir sowas raus:
>  x3=-a-b
>  x4=b
>  
> x=  [mm]\begin{pmatrix} x1 \\ x2 \\ x3 \\x4 \end{pmatrix}[/mm]
>
> [mm]=\begin{pmatrix} a \\ b \\ -a-b \\b \end{pmatrix}[/mm]
>
> [mm]=a*\begin{pmatrix} 1 \\ 0 \\ -1 \\0 \end{pmatrix}[/mm] +  
> [mm]b*\begin{pmatrix} 0 \\ 1 \\ -1 \\1 \end{pmatrix}[/mm]
>  
> Jetzt benutz ich die beiden Vektoren die rausgekommen sind
> als mein Spann und kann eigentlich das Gram-Schmidt
> verfahren benutzen. Hoffe das ich das ganze soweit richtig
> verstanden habe.

Es ist alles richtig, so wie du es geschrieben hast. Du musst nun nur noch die Vektoren [mm] \begin{pmatrix} 1 \\ 0 \\ -1 \\0 \end{pmatrix} [/mm] und [mm] \begin{pmatrix} 0 \\ 1 \\ -1 \\1 \end{pmatrix} [/mm] entsprechend orthogonalisieren.

Grüße,
Stefan

Bezug
                                                
Bezug
Basis des Bilds: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:43 So 22.11.2009
Autor: blackylk

Jo danke. Habs geschafft :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]