matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBasis des Eigenraums
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Basis des Eigenraums
Basis des Eigenraums < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis des Eigenraums: Wie komme ich auf die Basis?
Status: (Frage) beantwortet Status 
Datum: 16:03 Mi 22.12.2010
Autor: reyjunior

Aufgabe
http://www.mathematik.uni-muenchen.de/~schoerne/examen-s10/la03.pdf
Die Nummer 39 bitte ansehen. (Lösungsvorschläge sind gegeben, aber leider helfen Sie mir nicht soweit, dass ich es verstehe...

Wie ich die Eigenwerte einer Matrix ausrechne weiß ich, nur im Lösungsvorschlag hat man anhand dieser Werte die Basis des Eigenraums berechnet, bzw. angegeben, und ich weiß nicht wie man auf die nötigen Eigenvektoren kommt, um solch eine Basis aufzustellen...

(Was genau ist eigentlich eine Basis des Vektorraums, in der Laiensprache ausgedrückt?)

Würde mich über baldige Antworten freuen.




__________________________

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Cross-Postings sind Fragen, die parallel in mehreren Internet-Foren gestellt werden.

        
Bezug
Basis des Eigenraums: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Mi 22.12.2010
Autor: MontBlanc

Hallo,

das Kriterium für Diagonalisierbarkeit ist doch, dass die algebraische Vielfachheit der Eigenwerte gleich der geometrischen Vielfachheit der Eigenwerte ist.

Bestimme also die Eigenwerte. Um die geometrische Vielfachheit zu bestimmen löst du dann

[mm] (A-I*\lambda)=0 [/mm] mit [mm] \lambda [/mm] als Eigenwert. Denn [mm] g(\lambda)=dim(Ker(A-I\lambda) [/mm]
Welche Vektoren lösen dieses Gleichungssystem ? Wieviele sind es ?

LG



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]