Basis eines Unterraums < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Finden Sie eine Basis für den Unterraum U des [mm] \IR^{4} [/mm] , der durch die Vektoren (1,3,6,1), (1,12,-5,1), (1,9,7,1), (1,7,-4,1), (2,6,11,2), (1,-4,-5,1), (1,0,23,1) und (1,1,1,1) aufgespannt wird. (Basis muss keine Auswahl aus diesen Vektoren sein)
Welche Dimension hat dieser Unterraum ?
Finden Sie ein Gleichungssystem, das U als Lösungsraum hat. |
Um die Basis zu finden hab ich als erstes das Gaussverfahren angewendet, aber ich bin mir nicht sicher ob ich das auch wirklih so machen kann... jedenfalls bin ich auf
a) 1 3 6 1
b) 0 0 40 0
c) 0 0 14 0
d) 0 0 20 0
e) 0 0 -1 0
f) 0 7 11 0
g) 0 0 35 0
h) 0 0 -20 0 gekommen, dann b)+ 2x h) , c) + 14x e) und d)+ h), dass an den Stellen 0 0 0 0 entsteht.
übrig bleiben dann (1,3,6,1), (0,7,11,0) und (0,0,35,0). Aber das ist doch nie und nimmer die Basis von U oder? Ich hab das Gefühl ich hab das Gaussverfahren nicht richtig angewendet...
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo!
Dein Weg würde zum Ziel führen, dauert allerdings viel zu lange. Anhand der gegebenen Vektoren kannst du doch wunderbar sehen, dass der Vektor (1,1,1,1) von allen die erste und letzte Koordinate vollständig eliminieren kann. Die restlichen Vektoren haben dann nur noch bei der zweiten und dritten Koordinate Zahlen. Und man sieht schnell, dass die, aufgefasst als Vektoren des [mm] \IR^{2}, [/mm] nicht alle Vielfache eines einzigen Vektors sind, sondern man kann durchaus zwei finden, die linear unabhängig sind. D.h. Man erhält die Basis
(1,0,0,1), (0,1,0,0), (0,0,1,0).
Der erste Vektor weil praktisch bei allen Vektoren, die von den gegebenen erzeugt werden, immer die erste und letzte Koordinate gleich ist. Die zweiten beiden erzeugen einen Raum von Vektoren der Form (0,a,b,0).
Stefan.
|
|
|
|
|
Vielen Dank erstmal für die Antwort, aber 100%ig schlüssig ist mir das alles noch nicht so richtig...
okay, das mit dem (1,1,1,1)-Vektor versteh ich ja, aber wenn dann bei allen Vektoren die erste und letzte Vektorkomponente 0 wird, dann ist U doch 2-dimensional - soweit kann ich das ja auch bei dir nachvollziehen, aber warum haben die Basisvektoren dann wieder 4 Komponenten ?
|
|
|
|
|
> Vielen Dank erstmal für die Antwort, aber 100%ig schlüssig
> ist mir das alles noch nicht so richtig...
> okay, das mit dem (1,1,1,1)-Vektor versteh ich ja, aber
> wenn dann bei allen Vektoren die erste und letzte
> Vektorkomponente 0 wird, dann ist U doch 2-dimensional -
> soweit kann ich das ja auch bei dir nachvollziehen, aber
> warum haben die Basisvektoren dann wieder 4 Komponenten ?
Hallo!
U selbst ist nicht 2dimensional, auch wenn dieser Begriff schwammig ist. U ist ein Unterraum des [mm] \IR^{4}, [/mm] somit hat jeder Vektor in U 4 Komponenten. selbst wenn U nur Dimension = 2 haben sollte, hat jeder Vektor 4 Komponenten. Die Dimension sagt nämlich nur aus, wieviele Basisvektoren man benötigt, um den Raum vollständig aufzuspannen. In unserem Beispiel sind das 3, d.h. die Dimension von U ist 3.
Wahrscheinlich habe ich mich etwas unglücklich ausgedrückt. Wir lassen das mal mit dem [mm] \IR^{2}. [/mm] Was wir sehen ist, dass wir einerseits den Vektor (1,1,1,1) als Basisvektor nehmen könnten. Einen kann man sich ja beliebig raussuchen. Und nun sehen wir, dass dieser Vektor allein schon bei allen anderen die erste und vierte Komponente / Koordinate vollständig eliminiert. D.h. durch die anderen Vektoren können überhaupt nur noch 2 Komponenten eines Vektors verändert werden, der von ihnen erzeugt wird.
Durch schnelle Prüfung sieht man nun, das man durchaus bei diesen "anderen" Vektoren 2 linear unabhängige finden kann. Also haben wir zum einen den Basisvektor (1,1,1,1), und die "anderen" Vektoren spannen dann noch einen vollständigen Raum der Form (0,a,b,0) auf. Also nochmal zwei Basisvektoren (0,1,0,0) und (0,0,1,0). Und nun kann man es noch einfacher machen und diese jeweils nochmal vom ersten abziehen, womit wir wieder bei
(1,0,0,1), (0,1,0,0), (0,0,1,0)
sind.
Stefan.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:02 Do 27.11.2008 | Autor: | Hav0c |
wir haben aber in der algebra übung die formel für die dimension erhalten:
dim L= Anzahl der Unbestimmten - Anzahl der Nicht-NullZeilen in der Gauss-Endfigur
wäre hier ja 4-3 = 1 !?
hä?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:58 Do 27.11.2008 | Autor: | leduart |
Hallo
Da musst du was falsch aufgeschrieben haben: Dimension = anzahl der Nicht 0 Zeilen.
allerdings weiss ich nicht, was dein L ist.
Gruss leduart.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:05 Fr 28.11.2008 | Autor: | leduart |
Hallo Lenchen
Du solltest doch wissen, dass die 3 Vektoren die du gefunden hast auch eine basis bilden, falls du dich nicht verrechnet hast. Und immer gibts ja auch nicht so nen schoenen Trick, dann musst du deine Methode anwenden.
Gruss leduart
|
|
|
|