matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasis, erzeugendensystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis, erzeugendensystem
Basis, erzeugendensystem < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis, erzeugendensystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Mo 10.09.2007
Autor: pusteblume86

Also meine letzte Frage für heute wäre diese:


eine Basis ist ein linear unabhängiges Erzeugendensystem.

Alos müsste man eigentlich immer nachoprüfen ob es sich bei ner linear unabhängigen Menge von vektoren, die man anschließend Basis schimpfen möchte, auch wirklich um ein erzeugendensystem handelt.

Da kommt aber häufig dann folgender Saz ins Spiel:

wenn [mm] dimV_n(K) [/mm] = n dann ist folgendes äquivalanet:

B Basis
B maximal linear unabhängige Teilmenge,
B minimales Erzeugendensystem

Das heißt dann, das es ausreicht zu wissen, dass meine linear unabhängige Menge die ich gefunden habe maximal linear unabhänigig ist, dass hei0ßt, dass n+1 Elemente linear abhängig sind.

Damit wre dann auch gesagt, dass jede linear unabhängige Teilmenge mit n Elementen eine Basis ist. Ist das so richtig?

        
Bezug
Basis, erzeugendensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:39 Mo 10.09.2007
Autor: dormant

Hi!

> eine Basis ist ein linear unabhängiges Erzeugendensystem.

Ja, das minimale ESystem.
  

> wenn [mm]dimV_n(K)[/mm] = n dann ist folgendes äquivalanet:
>  
> B Basis
>  B maximal linear unabhängige Teilmenge,
>  B minimales Erzeugendensystem
>  
> Das heißt dann, das es ausreicht zu wissen, dass meine
> linear unabhängige Menge die ich gefunden habe maximal
> linear unabhänigig ist, dass hei0ßt, dass n+1 Elemente
> linear abhängig sind.

Wenn dim(V)=n, dann ist jede Menge M mit mehr als n Vektoren linear abhängig. Angenommen M hat n+1 Vektoren und man weiß, dim(V)=n. Dann ist M ein linear abhängiges System. Es bedeutet aber nicht, dass wenn man einen beliebigen Vektor v aus M rausschmeißt, dass dann [mm] M\backslash\{v\} [/mm] linear unabhängig ist. Das wollte ich nur mal klar stellen.

Für eine Basis für V mit dim(V)=n braucht man immer n linear unabhängige Vektoren.
  

> Damit wre dann auch gesagt, dass jede linear unabhängige
> Teilmenge mit n Elementen eine Basis ist. Ist das so
> richtig?

Das ist so richtig.

Gruß,
dormant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]