matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasis von Quotientenvektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis von Quotientenvektorraum
Basis von Quotientenvektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis von Quotientenvektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 Mo 27.04.2009
Autor: SEBBI001

Aufgabe
Es ist V ein K-Vektorraum mit der Basis [mm] v_{1} [/mm] , ... , [mm] v_{n} [/mm] und U [mm] \subset [/mm] V der von [mm] v_{1} [/mm] + ...  + [mm] v_{n} [/mm] erzeugte Unterraum. Bestimmen Sie eine Basis des Quotientenvektorraumes V/U

Ich komm da nicht weiter. Mir ist zwar klar, was ein QuotientenVR ist (die Menge aller Äquivalenzklassen [x] mit v - x [mm] \in [/mm] U) aber wie man das hier in diesem konkreten Fall anwenden soll, weiß ich nicht. Die Dimension von V/U müsste doch n-1 sein, da dim(V) = n und dim(U) = 1 ist, oder?

        
Bezug
Basis von Quotientenvektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Mo 27.04.2009
Autor: statler

Mahlzeit!

> Es ist V ein K-Vektorraum mit der Basis [mm]v_{1}[/mm] , ... , [mm]v_{n}[/mm]
> und U [mm]\subset[/mm] V der von [mm]v_{1}[/mm] + ...  + [mm]v_{n}[/mm] erzeugte
> Unterraum. Bestimmen Sie eine Basis des
> Quotientenvektorraumes V/U
>  Ich komm da nicht weiter. Mir ist zwar klar, was ein
> QuotientenVR ist (die Menge aller Äquivalenzklassen [x] mit
> v - x [mm]\in[/mm] U)

Ganz so geht das nicht! Es müßte dann heißen ... die Menge der Äquivalenzklassen [x] mit [v] = [x] für v - x [mm] \in [/mm] U

> aber wie man das hier in diesem konkreten Fall
> anwenden soll, weiß ich nicht. Die Dimension von V/U müsste
> doch n-1 sein, da dim(V) = n und dim(U) = 1 ist, oder?

Wenn du das schon alles weißt, dann ist es doch total einfach. Probier einfach mal, ob die n-1 Klassen [mm] [v_1], \ldots [/mm] , [mm] [v_{n-1}] [/mm] eine Basis bilden.

Sie tun es, und du solltest in der Lage sein, hinzuschreiben, warum.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Basis von Quotientenvektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Mo 27.04.2009
Autor: SEBBI001

Hallo, danke für die Antwort, aber ich hab trotzdem keine Ahnung, wie ich das hinschreiben soll. Wenn das so ist, dann müsste [mm] v_{n} [/mm] ja in irgendeiner anderen Aquivalenzklasse enthalten sein, aber wie schreib ich das hin und weise das richtig nach? Und wie zeige ich, dass [mm] v_{1} [/mm] bis [mm] v_{n-1} [/mm] dann wirklich eine Basis von V/U sind?

Bezug
                        
Bezug
Basis von Quotientenvektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 Mo 27.04.2009
Autor: TommyAngelo

Erlangen, oder? Schau mal hier ein Versuch von mir, der noch nicht beantwortet wurde:
http://www.matheboard.de/thread.php?threadid=391146

Bezug
                        
Bezug
Basis von Quotientenvektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:37 Di 28.04.2009
Autor: angela.h.b.


> Hallo, danke für die Antwort, aber ich hab trotzdem keine
> Ahnung, wie ich das hinschreiben soll. Wenn das so ist,
> dann müsste [mm]v_{n}[/mm] ja in irgendeiner anderen
> Aquivalenzklasse enthalten sein,

Hallo,

was Du bloß damit meinen magst:
[mm] v_n [/mm] ist in [mm] [v_n], [/mm] aber das kann ja nicht die Frage gewesen sein...


> aber wie schreib ich das
> hin und weise das richtig nach? Und wie zeige ich, dass
> [mm]v_{1}[/mm] bis [mm]v_{n-1}[/mm] dann wirklich eine Basis von V/U sind?

Momentchen:  [mm]v_{1}[/mm] bis [mm]v_{n-1}[/mm]  sind ganz gewiß keine Basis von V/U. Denn die Elemente von V/U sind ja Äquivalenzklassen.

Nachweisen solltest Du also, daß [mm] ([v_1],...,[v_{n-1}]) [/mm] eine Basis von V/U ist.

Da Du aus der Vorlesung offensichtlich schon weißt, daß die Dimension von V/U hier =n-1 ist, ist die lineare Unabhängigkeit der n-1 Restklassen zu zeigen.

Du mußt also zeigen, daß die triviale Linearkombination die einzige ist, mit welcher Du die Null (des V/U) erzeugen kannst.

Gruß v. Angela






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]