matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraBasis von R - Moduln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - Basis von R - Moduln
Basis von R - Moduln < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis von R - Moduln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:58 Do 13.08.2020
Autor: sina10

Hallöchen :) Ich muss mich für die bald anstehende Klausur mit $R$ - Moduln beschäftigen. Um genauer zu sein, muss ich mich mit freien $R$ - Moduln beschäftigen. Die Aufschriebe aus dem Skript sind nicht so hilfreich, daher habe ich auf Wikipedia nachgeschaut. Dazu habe ich mir die wichtigsten Abschnitte herausgeschnitten, die ich nicht verstehe.


Definition
________

Ein System von Elementen [mm] $\{x_{i}\mid i\in I\}$ [/mm] eines Moduls $M$ über einem Ring $R$ mit Einselement definiert eine Abbildung

[mm] $\xi \colon R^{{(I)}}\longrightarrow [/mm] M$ von der direkten Summe von Kopien von $R$ nach $M$, die von den Abbildungen [mm] $R\to M,\quad 1\mapsto x_{i}$ [/mm] induziert wird.

Ist [mm] $\xi$ [/mm]  injektiv, so heißt [mm] $\{x_{i}\mid i\in I\}$ [/mm] linear unabhängig.
Ist [mm] $\xi$ [/mm]  surjektiv, so heißt [mm] $\{x_{i}\mid i\in I\}$ [/mm] ein Erzeugendensystem.
Ist [mm] $\xi$ [/mm]  bijektiv, so heißt [mm] $\{x_{i}\mid i\in I\}$ [/mm] eine Basis von $M$.
Eine Basis ist also ein linear unabhängiges Erzeugendensystem.

Ich verstehe in dieser Definition nicht, was die Abbildung [mm] $\xi \colon R^{{(I)}}\longrightarrow [/mm] M$  bedeuten soll bzw. wie die konkret aussieht.
Was ist denn die "direkte Summe von Kopien von $R$ nach $M$ ? Was ist eine Kopie ? Und mir ist auch nicht ganz klar, wie diese Kopien von den Abbildungen [mm] $R\to M,\quad 1\mapsto x_{i}$ [/mm]  induziert werden.



Eigenschaften
____________

Eine linear unabhängige Teilmenge lässt sich im Allgemeinen nicht zu einer Basis ergänzen.
Eine maximal linear unabhängige Teilmenge ist im Allgemeinen keine Basis.
Ein minimales Erzeugendensystem ist im Allgemeinen keine Basis.


Der erste Satz sagt mir, dass ich eine linear unabhängige Menge i.A. nicht so ergänzen kann, dass ich eine Basis bekomme. Das kann ich mir irgendwie nicht vorstellen. Gibt es ein einfaches Beispiel dafür ?
Den zweiten Satz verstehe ich nicht. Was genau soll  "maximal linear unabhängige Teilmenge" bedeuten ?


Ich bedanke mich für jede Hilfe.

Liebe Grüße


        
Bezug
Basis von R - Moduln: Antwort
Status: (Antwort) fertig Status 
Datum: 05:25 Do 13.08.2020
Autor: tobit09

Hallo sina10!


> Ich verstehe in dieser Definition nicht, was die Abbildung
> [mm]\xi \colon R^{{(I)}}\longrightarrow M[/mm]  bedeuten soll bzw.
> wie die konkret aussieht.
> Was ist denn die "direkte Summe von Kopien von [mm]R[/mm] nach [mm]M[/mm] ?
> Was ist eine Kopie ? Und mir ist auch nicht ganz klar, wie
> diese Kopien von den Abbildungen [mm]R\to M,\quad 1\mapsto x_{i}[/mm]
> induziert werden.

Den Begriff "Kopie" kann ich leider nicht definieren, aber mit [mm] $R^{(I)}$ [/mm] ist die Menge aller Abbildungen [mm] $a\colon I\to [/mm] R$, für die die Menge [mm] $\{i\in I\;|\;a(i)\neq0\}$ [/mm] endlich ist, gemeint.

Die Abbildung [mm] $\xi$ [/mm] sieht wie folgt aus:

      [mm] $\xi\colon R^{(I)}\to M,\quad a\mapsto \sum_{i\in I}a(i)x_i$ [/mm] .

(Da für alle [mm] $a\in R^{(I)}$ [/mm] jeweils für fast alle [mm] $i\in [/mm] I$ die Bedingung $a(i)=0$ (in $R$) gilt, gilt erst recht [mm] $a(i)x_i=0$ [/mm] (in $M$) für fast alle [mm] $i\in [/mm] I$, so dass die Summe [mm] $\sum_{i\in I}a(i)x_i$ [/mm] wohldefiniert ist.)


Versäumt wird im []Wikipedia-Artikel zu definieren, wann eine Menge (im Gegensatz zu einer Familie) linear unabhängig/Erzeugendensystem heißt.
Ich würde folgende Definition wählen:
Eine Teilmenge [mm] $X\subseteq [/mm] M$ eines Moduls $M$ über einem Ring $R$ heißt linear unabhängig (bzw. Erzeugendensystem bzw. Basis), falls das System [mm] $(x)_{x\in X}$ [/mm] linear unahängig (bzw. Erzeugendensystem bzw. Basis) ist.


> Der erste Satz sagt mir, dass ich eine linear unabhängige
> Menge i.A. nicht so ergänzen kann, dass ich eine Basis
> bekomme. Das kann ich mir irgendwie nicht vorstellen. Gibt
> es ein einfaches Beispiel dafür ?

Ja. Die Menge [mm] $\{2\}$ [/mm] ist eine linear unabhängige Teilmenge von [mm] $\IZ$ [/mm] als [mm] $\IZ$-Modul, [/mm] die sich nicht zu einer Basis ergänzen lässt.


> Den zweiten Satz verstehe ich nicht. Was genau soll  
> "maximal linear unabhängige Teilmenge" bedeuten ?

Eine Teilmenge [mm] $X\subseteq [/mm] M$ heißt maximal linear unabhängige Teilmenge, falls $X$ linear unabhängig ist und keine weitere linear unabhängige Teilmenge [mm] $X'\subseteq [/mm] M$ mit [mm] $X'\supsetneq [/mm] X$ existiert.

Zu einer maximal linear unabhängigen Teilmenge lässt sich also kein einziges weiteres Element hinzufügen, ohne die lineare Unabhängigkeit zu verletzen.

Eine Teilmenge [mm] $X\subset [/mm] M$ ist genau dann maximal linear unabhängig, falls $X$ linear unabhängig ist und für alle [mm] $X'\subseteq [/mm] M$ mit [mm] $X'\supseteq [/mm] X$ gilt: $X'=X$.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]