matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasisaustaschsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Basisaustaschsatz
Basisaustaschsatz < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basisaustaschsatz: Erklärung
Status: (Frage) beantwortet Status 
Datum: 19:34 Mi 07.12.2011
Autor: Pauli85

Aufgabe
Austauschsatz:
In einem K-Vektorraum V seien eine Basis [mm] B=(v_{1},...,v_{r}) [/mm] und eine lineare unabhängige Familie [mm] (w_{1},...,w_{n}) [/mm] gegeben. Dann ist n [mm] \le [/mm] r, und es gibt Indizes [mm] i_{1},...,i_{n} \in [/mm] {1,...,r} derart, dass man nach Austasch von [mm] v_{i}_{1} [/mm] gegen [mm] w_{1}, v_{i}_{2} [/mm] gegen [mm] w_{2}, [/mm] ..., [mm] v_{i}_{n} [/mm] gegen [mm] w_{n} [/mm] wieder eine Basis von V erhält. Numeriert man so um, dass [mm] i_{1} [/mm] = [mm] 1,...,i_{} [/mm] = n ist, so bedeutet das, dass [mm] B\* [/mm] = [mm] (w_{1},...,w_{n}, v_{n+1},..., v_{r}) [/mm] eine Basis von V ist.

Hallo,
ich verstehe obigen Austausch Satz aus einem Buch nicht. Vorallem habe ich Probleme zu erkennen, was genau mit den Doppelindizes gemeint ist. Wäre eine von euch so freundlich, mir diesen Satz etwas besser zu erklären oder vielleicht ein konkretes Beispiel aufzuzeigen? Dafür wäre ich sehr dankbar.

Grüße

        
Bezug
Basisaustaschsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 Do 08.12.2011
Autor: angela.h.b.


> Austauschsatz:
>  In einem K-Vektorraum V seien eine Basis
> [mm]B=(v_{1},...,v_{r})[/mm] und eine lineare unabhängige Familie
> [mm](w_{1},...,w_{n})[/mm] gegeben. Dann ist n [mm]\le[/mm] r, und es gibt
> Indizes [mm]i_{1},...,i_{n} \in[/mm] {1,...,r} derart, dass man nach
> Austasch von [mm]v_{i}_{1}[/mm] gegen [mm]w_{1}, v_{i}_{2}[/mm] gegen [mm]w_{2},[/mm]
> ..., [mm]v_{i}_{n}[/mm] gegen [mm]w_{n}[/mm] wieder eine Basis von V erhält.
> Numeriert man so um, dass [mm]i_{1}[/mm] = [mm]1,...,i_{}[/mm] = n ist, so
> bedeutet das, dass [mm]B\*[/mm] = [mm](w_{1},...,w_{n}, v_{n+1},..., v_{r})[/mm]
> eine Basis von V ist.
>  Hallo,
>  ich verstehe obigen Austausch Satz aus einem Buch nicht.

Hallo,

der Satz sagt dies:
Du hast eine Basis eines Raumes, welche aus r Elementen besteht, und n linear unabhängige Vektoren dieses Raumes.
Du findest in der Basis n Vektoren so, daß, wenn Du sie aus der Basis entfernst und die Vektoren der linear unabhängigen Familie dafür einfügst, Du wieder eine Basis des Raumes bekommst.
Dies zu wissen, ist erstmal das Wichtigste.

> In einem K-Vektorraum V seien eine Basis
> [mm] $B=(v_{1},...,v_{r})$ [/mm] und eine lineare unabhängige Familie
> [mm] $(w_{1},...,w_{n})$ [/mm] gegeben. Dann ist n [mm] $\le$ [/mm] r,

Klar. Wenn n>r wäre, dann könnte [mm] $B=(v_{1},...,v_{r})$ [/mm] keine Basis sein.

> und es gibt
> Indizes [mm] $i_{1},...,i_{n} \in$ [/mm] {1,...,r} derart, dass man nach
> Austasch von [mm] $v_{i}_{1}$ [/mm] gegen [mm] $w_{1}, v_{i}_{2}$ [/mm] gegen [mm] $w_{2},$ [/mm]
> ..., [mm] $v_{i}_{n}$ [/mm] gegen [mm] $w_{n}$ [/mm] wieder eine Basis von V erhält.

Wenn Du Glück hast, kannst Du direkt  [mm] v_1 [/mm] gegen [mm] w_1, v_2 [/mm] gegen [mm] v_2, [/mm] ..., [mm] v_r [/mm] gegen [mm] w_r [/mm] tauschen.
Wenn nicht, macht das auch nichts. Du kannst die [mm] v_i [/mm] in eine andere Reihenfolge bringen, damit es klappt.
Dieses in-eine-andere-Reihenfolge-Bringen wird durch die Doppelindizes ausgedrückt.

> Numeriert man so um, dass [mm] $i_{1}$ [/mm] = [mm] $1,...,i_{}$ [/mm] = n ist, so
> bedeutet das, dass [mm] $B\*$ [/mm] = [mm] $(w_{1},...,w_{n}, v_{n+1},..., v_{r})$ [/mm]
> eine Basis von V ist.

Man kann die [mm] v_i [/mm] so umtaufen, daß der direkte Austausch [mm] v_1 [/mm] gegen [mm] w_1 [/mm] usw. klappt.

Beispiel: [mm] V:=\IR, [/mm] die Basis B sei (aus Bequemlichkeitsgründen) die Standardbasis [mm] B:=(e_1, e_2, e_3, e_4), [/mm] und die linear unabhängige Familie sei [mm] (w_1:=\vektor{1\\2\\0\\0},w_2:=\vektor{2\\4\\0\\1}). [/mm]
Der "direkte" Austausch klappt nicht, denn
[mm] (w_1, w_2, v_3, v_4) [/mm] ist nicht linear unabhängig.

Wenn ich aber so schlau bin zu wählen [mm] i_1:=1, i_2:=4, i_3:=2, i_4:=3,d [/mm]
dann kann ich [mm] w_1 [/mm] gegen [mm] v_{i_1}=v_1 [/mm] und [mm] w_2 [/mm] gegen [mm] v_{i_2}=v_4 [/mm] tauschen und bekomme mit [mm] (w_1, v_2, v_3, w_4) [/mm] eine Basis.
(Daß so einen Wahl möglich ist, sagt der Satz)

Oder ich bringe vorher die Basisvektoren  in eine geeignete Reihenfolge, hier [mm] (v_1, v_4, v_2, v_3), [/mm] und kann dann direkt den ersten "Familien"vektor gegen den ersten Basisvektor, den zweiten Familienvektor gegen den zweiten Basisvektor tauschen.

Gruß v. Angela


Ich hoffe, es ist jetzt etwas klarer.










Bezug
                
Bezug
Basisaustaschsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:47 Do 08.12.2011
Autor: Pauli85

Perfekt, habe es verstanden!
Wenn man weiß, was damit gemeint ist, kommt einen die Frage irgendwie dämlich vor ^.^

Vielen vielen Dank für die Mühe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]