matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBasiswechsel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Basiswechsel
Basiswechsel < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechsel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:39 Di 05.03.2013
Autor: Masseltof

Aufgabe
Sei [mm] B=\{e_{1}; e_{2}; e_{3}\} [/mm] die kanonische Basis der [mm] \IR. [/mm]

Wie lautet die Basistransformationsmatrix T für den Fall, dass die Orthonormalbasis [mm] B'=\{\frac{1}{5}\vektor{3\\0\\4},\frac{1}{5}\vektor{-4\\0\\3}; \vektor{0\\-1\\0}\} [/mm] lautet.

Guten Tag.

Mein Idee zur obigen Aufgabe:

Vektoren aus B sollen in B' überführt würden.
Jeder Vektor im Vektorraum [mm] \IR [/mm] kann durch B dargestellt werden.
Da nun B' als neue Basis fungieren soll, müsste jeder Vektor im [mm] \IR [/mm] ebenfalls durch B' dargestellt werden können.

Ich wollte nun so vorgehen, dass ich ein LGS bilde, sodass gilt
[mm] \lambda_{1}e_{1}+\lambda_{2}e_{2}+\lambda_{3}e_{3}=\frac{1}{5}\vektor{3\\0\\4} [/mm]

Das lässt sich durchführen für die drei neuen Basen, sodass ich daraus die Transformationsmatrix T erhalten müsste.
Ist der Ansatz so richtig?

Grüße

        
Bezug
Basiswechsel: Antwort
Status: (Antwort) fertig Status 
Datum: 09:55 Di 05.03.2013
Autor: fred97

Schau mal hier:

http://de.wikipedia.org/wiki/Basiswechsel_(Vektorraum)

"Spezialfälle"

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]