matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteBasiswechsel Eigenvektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Basiswechsel Eigenvektoren
Basiswechsel Eigenvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechsel Eigenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 So 11.03.2007
Autor: Tigerkatze

Aufgabe
Finden sie die Matrix, welche die Matrix [mm] \pmat{ 12 & 5 \\ -30 & -13 } [/mm] diagonalisiert und stellen sie den Koordinatenvektor(bezüglich der alten Basis) [mm] \vektor{1 \\ 0} [/mm] in der neuen Basis dar.

Hallo,
ich habe die Eigenwerte und Eigenvektoren der Matrix bestimmt( 2, [mm] \vektor{a \\ -2a} [/mm] ; -3, [mm] \vektor{b \\ -3b} [/mm] und die Matrix diagonalisiert. Jetzt will ich den Vektor [mm] \vektor{1 \\ 0} [/mm] in der neuen Basis, also mit den Eigenvektoren als Basis darstellen. Leider hab ich keine Ahnung wie ich das machen solln, muss ich den Vektor mit der diagonalisierenden matrix multiplizieren? oder mit der Inversen? Oder sonst irgendwie eine linear Kombination finden?
*etwas hilflos bin* Vielen Dank für eure Antworten.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
Basiswechsel Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 So 11.03.2007
Autor: angela.h.b.


> Finden sie die Matrix, welche die Matrix [mm]\pmat{ 12 & 5 \\ -30 & -13 }[/mm]
> diagonalisiert und stellen sie den
> Koordinatenvektor(bezüglich der alten Basis) [mm]\vektor{1 \\ 0}[/mm]
> in der neuen Basis dar.
>  Hallo,
>  ich habe die Eigenwerte und Eigenvektoren der Matrix
> bestimmt( 2, [mm]\vektor{a \\ -2a}[/mm] ; -3, [mm]\vektor{b \\ -3b}[/mm] und
> die Matrix diagonalisiert. Jetzt will ich den Vektor
> [mm]\vektor{1 \\ 0}[/mm] in der neuen Basis, also mit den
> Eigenvektoren als Basis darstellen.

Hallo,

es ist also [mm] \vektor{1 \\ -2} [/mm] ein Eigenvektor zum Eigenwert 2 und [mm] \vektor{1 \\ -3} [/mm] ein Eigenvektor zum Eigenwert -3.

Die beiden kannst Du als als neue Basis B=( [mm] \vektor{1 \\ -2},\vektor{1 \\ -3}) [/mm] der [mm] \IR^3 [/mm] verwenden, und bzgl. dieser Basis hat die Matrix von ganz oben die Gestalt [mm] \pmat{ 2 & 0 \\ 0 & -3 }, [/mm] denn der erste Basisvektor verdoppelt sich, und der zweite verdreifacht sich.

Was Dir jetzt noch fehlt, ist die Transformationsmatrix, die Matrix T mit [mm] T^{-1}\pmat{ 12 & 5 \\ -30 & -13 }T=\pmat{ 2 & 0 \\ 0 & -3 }. [/mm]

T ist die Matrix, welche Dir B in kanonischen Koordinaten liefert, also [mm] \pmat{ 1 & 1 \\ -2 & -3 }. [/mm]

[mm] T^{-1} [/mm] erhältst Du, indem Du invertierst, oder indem Du Dir überlegst/berechnest, wie Du [mm] \vektor{1 \\ 0} [/mm] und [mm] \vektor{0 \\ 1} [/mm] bezgl der Basis B schreiben kannst,

also [mm] \vektor{1 \\ 0}=a\vektor{1 \\ -2}+b\vektor{1 \\ -3}, [/mm]
[mm] \vektor{0 \\ 1}=c\vektor{1 \\ -2}+d\vektor{1 \\ -3} [/mm]

Gruß v. Angela

Bezug
                
Bezug
Basiswechsel Eigenvektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:00 Mo 12.03.2007
Autor: Tigerkatze

Danke für die ausführliche Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]