matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBasiswechsel, Eigenwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Basiswechsel, Eigenwerte
Basiswechsel, Eigenwerte < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechsel, Eigenwerte: Ansatz
Status: (Frage) beantwortet Status 
Datum: 16:58 Di 21.03.2017
Autor: Franzi17

Aufgabe
Seien A,B ∈ Matm(R) und T ∈ GLm(C) mit TAT^−1 = B.

a) Sei T = U + iV mit U,V ∈ Matm(R) und [mm] i^2 [/mm] = −1. Zeigen Sie, dass UA = BU und V A = BV .

b) Zeigen Sie, dass es für jedes Polynom P(X) [mm] ∈R[X]\{0} [/mm] ein λ ∈R mit P(λ) ungleich 0 gibt.

c) Beweisen Sie, dass es S ∈ GLm(R) mit SAS^−1 = B gibt.

Hallo,
ich bitte dringend um Hilfe, bin mit dieser Aufgabe ziemlich überfordert.

Bei a) war mein Gedanke dass ich

BU = (TAT^-1)U so umformen können müsste, dass ich auf UA komme.
Mit [mm] T^1 [/mm] = [mm] (U^1 [/mm] + iV^-1)
jedoch führt das ins Nirgendwo und ich komme nie auf das richtige Ergebnis.


Bei b) scheitere ich schon der Fragestellung. Mir ist nicht ganz genau klar, was damit gemeint ist. Wenn P(/Lambda) ungleich 0, dann ist /Lambda ja kein Eigenwert von diesem Polynom?!

Bei c) weiss ich aus Versuchen mit 2x2 Matrizen, dass man T sowohl als eine Matrix(C), als auch eine Matrix(R) darstellen kann. Aber mir fehlt jede Idee für einen allgemeinen Beweis.

Vielen Dank für die Hilfe!

        
Bezug
Basiswechsel, Eigenwerte: zu a)
Status: (Antwort) fertig Status 
Datum: 07:15 Mi 22.03.2017
Autor: angela.h.b.


> Seien A,B ∈ Matm(R) und T ∈ GLm(C) mit TAT^−1 = B.
>
> a) Sei T = U + iV mit U,V ∈ Matm(R) und [mm]i^2[/mm] = −1.
> Zeigen Sie, dass UA = BU und V A = BV .

Hallo,

es ist  TAT^−1 = B,
also TA=BT.

Nun setze T=U+iV ein und ziehe Deine Schlüsse.

LG Angela


>
> b) Zeigen Sie, dass es für jedes Polynom P(X) [mm]∈R[X]\{0}[/mm]
> ein λ ∈R mit P(λ) ungleich 0 gibt.
>  
> c) Beweisen Sie, dass es S ∈ GLm(R) mit SAS^−1 = B
> gibt.
>  Hallo,
> ich bitte dringend um Hilfe, bin mit dieser Aufgabe
> ziemlich überfordert.
>
> Bei a) war mein Gedanke dass ich
>
> BU = (TAT^-1)U so umformen können müsste, dass ich auf UA
> komme.
> Mit [mm]T^1[/mm] = [mm](U^1[/mm] + iV^-1)
> jedoch führt das ins Nirgendwo und ich komme nie auf das
> richtige Ergebnis.
>
>
> Bei b) scheitere ich schon der Fragestellung. Mir ist nicht
> ganz genau klar, was damit gemeint ist. Wenn P(/Lambda)
> ungleich 0, dann ist /Lambda ja kein Eigenwert von diesem
> Polynom?!
>  
> Bei c) weiss ich aus Versuchen mit 2x2 Matrizen, dass man T
> sowohl als eine Matrix(C), als auch eine Matrix(R)
> darstellen kann. Aber mir fehlt jede Idee für einen
> allgemeinen Beweis.
>
> Vielen Dank für die Hilfe!


Bezug
        
Bezug
Basiswechsel, Eigenwerte: zu b)
Status: (Antwort) fertig Status 
Datum: 14:23 Mi 22.03.2017
Autor: angela.h.b.


> b) Zeigen Sie, dass es für jedes Polynom P(X) [mm]∈R[X]\setminus\{0\}[/mm]
> ein λ ∈R mit [mm] P(\lambda)\not=0 [/mm] gibt.
>  

> Bei b) scheitere ich schon der Fragestellung. Mir ist nicht
> ganz genau klar, was damit gemeint ist. Wenn P(/Lambda)
> ungleich 0, dann ist /Lambda ja kein Eigenwert von diesem
> Polynom?!

Hallo,

nein, dann ist [mm] \lambda [/mm] natürlich kein Eigenwert.
Von Eigenwerten steht in Aufgabe b) auch nichts, auch nicht  davon, daß P irgendetwas mit A oder B zu tun hat.
Da steht einfach nur, daß es für ein Polynom P aus [mm] \IR[X], [/mm] welches nicht das Nullpolynom ist, eine reelle Zahl [mm] \lambda [/mm] gibt mit [mm] P(\lambda)\not=0. [/mm]
Es gibt also eine Stelle, welche nicht Nullstelle ist.
Wie Du das löst, kommt darauf an, was über Polynome schon dran war.

LG Angela

>  
> Bei c) weiss ich aus Versuchen mit 2x2 Matrizen, dass man T
> sowohl als eine Matrix(C), als auch eine Matrix(R)
> darstellen kann. Aber mir fehlt jede Idee für einen
> allgemeinen Beweis.
>
> Vielen Dank für die Hilfe!


Bezug
                
Bezug
Basiswechsel, Eigenwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:56 Do 23.03.2017
Autor: Franzi17

Hallo,
Vielen Dank für die Antwort.
A.) Hat geklappt.
B) war über den Satz, dass ein Polynom endlich viele Nullstellen besitzt möglich
Und C) hat sich aus a) und b) ergeben.
Danke für die Hilfe!

Bezug
                        
Bezug
Basiswechsel, Eigenwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:59 Do 23.03.2017
Autor: Franzi17

Habe versucht die Frage als bewntwortet zu kennzeichnen, hat leider nicht geklappt!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]