matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBayes-Aufgabe richtig?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Bayes-Aufgabe richtig?
Bayes-Aufgabe richtig? < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bayes-Aufgabe richtig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Mo 08.07.2019
Autor: elektroalgebra93

Aufgabe
Es finden Prüfungen statt, je eine pro Studierendem. Von 80 Teilnehmern in Mathematik seien 50% durchgefallen. Durchfallquote in Spanisch sei bei 50 Teilnehmern, 30%. In Physik ist nur ein Student von 15 Teilnehmern durchgefallen.
-> Mit Welcher Wahrscheinlichkeit hat ein zufällig ausgewählter Student seine Prüfung nicht bestanden
-> Mit welcher wahrscheinlichkeit hat ist ein zufällig ausgewählter Student, der eine Prüfung nicht bestanden hat, in Physik durchgefallen?

Hallo an alle

Wollte wissen ob meine Lösung zu der Aufgabe richtig ist.

Im ganzen 145 Teilnehmer.
Also:

Die Wahrscheinlichkeiten der Prüfungen:
P(Mathematik) = 100/145 * 80 = 55%
P(Spanisch) = 100/145 * 50 = 35 %
P(Physik) = 100/145 * 15 = 10%

d=durchgefallen
P(d | Mathematik) = 50%
P(d | Spanisch) = 30%
P(d | Physik) = 1/15 * 100 = 6,6 = 7%
Stimmt das bis hier hin?

-----

-> Mit Welcher Wahrscheinlichkeit hat ein zufällig ausgewählter Student seine Prüfung nicht bestanden:
P(d) = P(Mathematik)  * P(d | Mathematik) + P(Spanisch) * P(d | Spanisch) + P(Physik)  * P(d | Physik)  = 55% * 50% + 35% * 30% + 10% * 7% =  39%

-> Mit welcher wahrscheinlichkeit hat ist ein zufällig ausgewählter Student, der eine Prüfung nicht bestanden hat, in Physik durchgefallen?
P(Physik | d) = [mm] \bruch{P(d | Physik) * P(Physik)}{P(d)} [/mm] = [mm] \bruch{7 * 10}{39} [/mm] = 1,79%

Was sagt ihr dazu ?

Vielen Dank

        
Bezug
Bayes-Aufgabe richtig?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Mo 08.07.2019
Autor: HJKweseleit

Alles richtig. Aber es tut weh. Du schießt mit Kanonen auf Spatzen.

Von 145 Studenten sind 56 durchgefallen. Also ist die W., dass ein Student durchgefallen ist, 56/145.

Von 56 Durchgefallenen ist einer Ph-Student, also ist die W., dass ein Durchgefallener in Physik durchgefallen ist, 1/56.

Man kann auch mit dem Hubschrauber zum Bäcker fahren oder Flächen von Quadraten per Integral berechnen...


Bezug
                
Bezug
Bayes-Aufgabe richtig?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:31 Di 09.07.2019
Autor: elektroalgebra93

Danke für deine Antwort. Bin froh dass es richtig ist, da in der Musterlösung 15% als P(d | Physik) benutzt worden ist, was aber meiner Meinung nach keinen Sinn ergibt.

Und natürlich hast du vollkommen Recht-bei dieser Aufgabe ging es jedoch darum den Bayes Theorem anzuwenden.

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]