matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenBedeutung von "closure"
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Bedeutung von "closure"
Bedeutung von "closure" < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedeutung von "closure": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:59 Mo 06.08.2012
Autor: barsch


Hallo!

Folgendes Problem:

Seien X,Y Banachräume und [mm]G:X\to{Y}[/mm] eine Abbildung.

Weiter sei [mm]Z=\textrm{cl}(\textrm{Im} \ G'(z))[/mm] "the closure of the Image of G' (1. Ableitung) evaluated in z" - also: Der Abschluss (?) des Bildes der 1. Ableitung G' ausgewertet in z.

Angenommen es ist [mm]G:\IR^2\to\IR[/mm] mit [mm]G(x_1,x_2)=x_1^2+x_2^2[/mm] und [mm]z=(z_1,z_2)=(0,0)[/mm].

Dann ist [mm]G'(z)=\vektor{0 \\ 0}[/mm] und [mm]\textrm{Im} \ G'(z)=\left \{ \vektor{0\\ 0} \right \}[/mm]. Was ist denn dann [mm]\textrm{cl}(\textrm{Im} \ G'(z))[/mm]?

Ich verstehe das "closure" in diesem Zusammenhang nicht. Im vorliegenden Text heißt es dann weiter

[mm]W=\textrm{cl}(\textrm{span} \ \textrm{Im} (...))[/mm]. (...) dient nur als Platzhalter - dort steht eine andere Abbildung als G.

In der englischen wikipedia steht dazu:

"In linear algebra, the linear span of a set X of vectors is the closure of that set; it is the smallest subset of the vector space that includes X and is closed under the operation of linear combination. This subset is a subspace."

Das verwirrt mich noch mehr - wenn der linear span doch dem closure entspricht, dann ist cl(span Im ...) doch doppelt gemoppelt?!

Ich hoffe, es ist ersichtlich, was ich meine und es kann jemand Licht ins Dunkel bringen (vielleicht mit einem Beispiel - das wäre perfekt). [idee] DANKE.

Gruß
barsch


        
Bezug
Bedeutung von "closure": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:52 Mo 06.08.2012
Autor: hippias

$G'(z)$ ist eine lineare Abbildung und es wird vermutlich der topologische Abschluss ihres Bildraumes gemeint sein. In deinem Beispiel ist der Bildraum einelementig (enthaelt nur die Nullabbildung), sodass die Menge gleich ihrem Abschluss ist.

Bezug
        
Bezug
Bedeutung von "closure": Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Mo 06.08.2012
Autor: fred97


>
> Hallo!
>  
> Folgendes Problem:
>  
> Seien X,Y Banachräume und [mm]G:X\to{Y}[/mm] eine Abbildung.
>  
> Weiter sei [mm]Z=\textrm{cl}(\textrm{Im} \ G'(z))[/mm] "the closure
> of the Image of G' (1. Ableitung) evaluated in z" - also:
> Der Abschluss (?) des Bildes der 1. Ableitung G'
> ausgewertet in z.


Ich kann nur bestätigen, was Hippias geschrieben hat. Ist z [mm] \in [/mm] X und G in z differenzierbar, so ist G'(z) eine stetige lineare Abbildung G'(z):X [mm] \to [/mm] Y.

Im G'(z) Ist also der Bildraum G'(z)(X) = [mm] \{G'(z)(x): x \in X \}. [/mm]

Damit ist obiges Z die abgeschlossene Hülle von G'(z)(X). Z ist damit ein abgeschlossener Unterraum von Y.

>  
> Angenommen es ist [mm]G:\IR^2\to\IR[/mm] mit [mm]G(x_1,x_2)=x_1^2+x_2^2[/mm]
> und [mm]z=(z_1,z_2)=(0,0)[/mm].
>  
> Dann ist [mm]G'(z)=\vektor{0 \\ 0}[/mm] und [mm]\textrm{Im} \ G'(z)=\left \{ \vektor{0\\ 0} \right \}[/mm].
> Was ist denn dann [mm]\textrm{cl}(\textrm{Im} \ G'(z))[/mm]?

In deinem Beispiel ist G'(z) die Nullabbildung [mm] (\IR^2 \to \IR) [/mm]

>  
> Ich verstehe das "closure" in diesem Zusammenhang nicht. Im
> vorliegenden Text heißt es dann weiter
>
> [mm]W=\textrm{cl}(\textrm{span} \ \textrm{Im} (...))[/mm]. (...)
> dient nur als Platzhalter - dort steht eine andere
> Abbildung als G.

Scheib das mal ganz genau auf.


>  
> In der englischen wikipedia steht dazu:
>  
> "In linear algebra, the linear span of a set X of vectors
> is the closure of that set; it is the smallest subset of
> the vector space that includes X and is closed under the
> operation of linear combination. This subset is a
> subspace."

Oh Gott ! Wiki ist nicht die Bibel ! Da oben ist von der linearen Hülle von X die Rede. Ich halte es für ein Verbrechen, diese mit "closure" zu bezeichnen. Zu rechtfertigen ist das eigentlich nur, wenn man an "algebraischen Abschluß" denkt. Üblich ist das aber nicht.

"closure" ist reserviert für die (topologisch) abgeschlossene Hülle einer Teilmenge eines top. Raumes.

FRED

>  
> Das verwirrt mich noch mehr - wenn der linear span doch dem
> closure entspricht, dann ist cl(span Im ...) doch doppelt
> gemoppelt?!
>  
> Ich hoffe, es ist ersichtlich, was ich meine und es kann
> jemand Licht ins Dunkel bringen (vielleicht mit einem
> Beispiel - das wäre perfekt). [idee] DANKE.
>  
> Gruß
>  barsch
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]