matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenBedienung für Extremwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Bedienung für Extremwerte
Bedienung für Extremwerte < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedienung für Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:15 Sa 09.02.2013
Autor: Andynator

Aufgabe
Gegeben sei die Funktion f mit f(x) = [mm] ax^3 [/mm] + [mm] bx^2 [/mm] + cx + d
Welche Bedienungen müssen die Koeffizienten a, b, c und d jeweils erfüllen, damit f zwei Extremwerte besitzt?

Hallo!
Ich habe da eine Frage bezüglich der Aufgabe, da ich mit ihr nicht so richtig zurecht komme.
Würde es sich um eine Extremstelle handeln, hätte ich gesagt:
a = 0 [mm] \wedge [/mm] b [mm] \not= [/mm] 0
Da:
[mm] f'(x_{0}) [/mm] = 0, ..., [mm] f^{(n-1)}(x_{0}) [/mm] = 0,
[mm] f^{(n)}(x_{0}) \not= [/mm] 0 und n gerade sein muss.
Dann hätte ich genau 1 Extremstelle, da das [mm] x^3 [/mm] wegfällt und die 2. Ableitung den Wert von b enthält.

Bei 2 Extremstellen... ja, muss ich da nicht einfach ein [mm] x_{1} [/mm] finden, was eben auch die obigen Kriterien erfüllt?
Nur würde ich dadurch ja nichts an den Koeffizienten aussagen. Und die Lösung sagt mir was vollkommen anderes, worauf ich nie im Leben gekommen wäre und auch nach längeren Überlegen meiner Meinung nach keinen Sinn ergibt...

        
Bezug
Bedienung für Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 01:24 Sa 09.02.2013
Autor: steppenhahn

Hallo,


> Gegeben sei die Funktion f mit f(x) = [mm]ax^3[/mm] + [mm]bx^2[/mm] + cx + d
>  Welche Bedienungen müssen die Koeffizienten a, b, c und d
> jeweils erfüllen, damit f zwei Extremwerte besitzt?
>  Hallo!
>  Ich habe da eine Frage bezüglich der Aufgabe, da ich mit
> ihr nicht so richtig zurecht komme.
>  Würde es sich um eine Extremstelle handeln, hätte ich
> gesagt:
>  a = 0 [mm]\wedge[/mm] b [mm]\not=[/mm] 0
>  Da:
>  [mm]f'(x_{0})[/mm] = 0, ..., [mm]f^{(n-1)}(x_{0})[/mm] = 0,
>  [mm]f^{(n)}(x_{0}) \not=[/mm] 0 und n gerade sein muss.
>  Dann hätte ich genau 1 Extremstelle, da das [mm]x^3[/mm] wegfällt
> und die 2. Ableitung den Wert von b enthält.

Das ist ok.



> Bei 2 Extremstellen... ja, muss ich da nicht einfach ein
> [mm]x_{1}[/mm] finden, was eben auch die obigen Kriterien erfüllt?

Genau.
Also bilde zunächst die erste Ableitung:

$f'(x) = 3 a [mm] x^2 [/mm] + 2 b x + c$.

Damit du zwei Extremstellen bekommst, musst die erste Ableitung zwei Nullstellen haben. Dafür brauchst du auf jeden Fall $a [mm] \not= [/mm] 0$.

Du musst nun also die Bedingung für a,b,c finden, so dass die quadratische Gleichung $f'(x) = 0$ zwei Lösungen hat.

Dadurch bekommst du doch Bedingungen für die Koeffizienten.

Viele Grüße,
Stefan


Bezug
                
Bezug
Bedienung für Extremwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:10 Sa 09.02.2013
Autor: Andynator

Hallo Stefan!

Danke für die Hilfe!
Jetzt war der Rest auch klar, das ganze kann man dann ja durch anschauen und bisschen überlegen der PQ-Formel relativ schnell lösen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]