Bedingt konvergente Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es sei [mm] \summe_{k=0}^{\infty} a_{k} [/mm] eine bedingt konvergente Reihe.
a) Sei [mm] a\in \IR. [/mm] Zeigen Sie, dass es eine Folge [mm] (\varepsilon_{n})_{n\in\IN} [/mm] mit [mm] \varepsilon_{n} \in {{\pm 1}},n \in \IN, [/mm] gibt, so dass die Reihe [mm] \summe_{k=0}^{\infty} \varepsilon_{k} [/mm] * [mm] a_{k} [/mm] gegen a konvergiert.
b) Weisen Sie auch nach, dass man die Vorzeichenfolge [mm] (\varepsilon_{n})_{n \in \IN} [/mm] so wählen kann, dass die Reihe [mm] \summe_{k=0}^{\infty}\varepsilon_{k} [/mm] * [mm] a_{k} [/mm] divergiert. |
Hey ihr,
ich habe ein großes Problem bei dieser Aufgabe, denn ich weiß zwar was bedingt konvergent heißt (sie konvergiert halt nur nicht absolut), aber ich weiß nich wie ich dort anfangen soll irgendwas zu zeigen. mir wurde gesagt das ich das mit der partialsumme machen kann, nur hab ich keine ahnung wo und wie die mir hier helfen kann. habt ihr nen tipp für mich wo ich ansetzen kann?
Vielen Dank schonmal im Vorraus.
Liebe Grüße
MatheMäxchen
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: also nicht ich aber irgendwer anderes: http://www.matheboard.de/thread.php?postid=1063507#post1063507
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:01 Fr 11.12.2009 | Autor: | pelzig |
Was du benutzen musst ist, dass für bedingt konvergente Reihen gilt, dass die Reihen [mm] $\sum_{k=0}^\infty a_k^+$ [/mm] und [mm] $\sum_{k=0}^\infty a_k^-$ [/mm] beide gegen [mm] $\infty$ [/mm] divergieren, wobei [mm] $a_k^\pm:=\max\{\pm a_k,0\}$ [/mm] die Folgen der positiven bzw. negativen Anteile von [mm] $(a_k)$ [/mm] sind...
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 03:08 Fr 11.12.2009 | Autor: | felixf |
Hallo MatheMaexchen!
Ich habe die Frage mal auf vollstaendig beantwortet gesetzt, da die Informationen aus dem anderen Forum zusammen mit dem Hinweis von pelzig voellig ausreichen sollten.
Falls das nicht der Fall ist, dann frag doch nochmal genauer nach und sag wo du ein Problem hast und wie weit du bisher gekommen bist.
LG Felix
|
|
|
|