matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenBegrenztes Wachstum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Begrenztes Wachstum
Begrenztes Wachstum < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Begrenztes Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 So 11.03.2012
Autor: Mathics

Aufgabe
Ein Gegenstand steht draußen im Winter, wo es -10°C ist. Anschließend wird es ins Haus gebracht, wo eine Zimmertemp. von 20°C herrscht.
Die Temperatur steigt um 16% von der Differenz zwischen Raumtemperatur und der aktuellen Temperatur.

Stellen Sie die Formel auf und begründen Sie, warum es sich um begrenztes Wachstum handelt.

Hallo,

die Formel lautet:

f(x)= 20-30*e^(-0,16t)

In dieser Aufgabe liegt eine Sättigungsgrenze S, und zwar 20°C, vor. Der Gegenstand kann nicht wärmer als 20°C werden. Die Änderungsrate 0,16 ist stets derselbe Anteil von der Differenz von der Sättigungsgrenze S und dem augenblicklichen Bestand B(t). Da am Anfang diese Differenz am höchsten ist, ist das beschränkte Wachstum zu Beginn am größten und läuft dann asymptotisch gegen die Sättigungsgrenze.

Ist die Aufgabe vollständig damit beantwortet?

LG

        
Bezug
Begrenztes Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 01:07 Mo 12.03.2012
Autor: leduart

Hallo
in der Aufgabe ist eine Ungenauigkeit, in welcher Zeit steigt sie um 16%?
Die lösungsformel ist richtig, ob du die differentialgl. aufschreiben solltest weiß ich nicht
eigentlich sollte da je nach der Zeit im exponenten stehen
[mm] e^{0.16/Min*t} [/mm] wenn die zeit in Minuten ist.
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]