matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikBerechnung Verteilungsfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Berechnung Verteilungsfunktion
Berechnung Verteilungsfunktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:46 Mi 06.02.2008
Autor: Corn

Aufgabe
Die Zufallsvariablen [mm] X_1,...,X_n [/mm] seien iid gleichverteilt auf (0,1)
(was iid bedeutet, siehe meine Rechnung)
Berechnen Sie die Verteilungsfunktionen von [mm] Y_1:=min(X_1,...,X_n) [/mm] sowie [mm] Y_2:= max(X_1,..,X_n) [/mm]

Hi
Hier zunächst die Rechnung der Aufgabe, wobei mir grundlegendes nicht klar ist

[mm] P(Y_1 [/mm] > t) =...
Kann mir jemand sagen, warum wir hier Y > t suchen?

[mm] P(Y_1 [/mm] > t) = [mm] P(X_1 [/mm] > [mm] t,...,X_n>t) [/mm]

wegen iid gilt jetzt

[mm] =P(X_1>t)^n [/mm]

= [mm] (1-t)^n [/mm]

Warum kommt da [mm] (1-t)^n [/mm] heraus?

Für [mm] Y_2 [/mm]

[mm] P(Y_2 \le [/mm] t) =...
Warum ist das hier Y [mm] \le [/mm] t? Das muß etwas damit zu tun haben, daß wir sonst nicht mehr in der U(0,1) Verteilung sind? Vermute ich mal so

Wegen iid
= [mm] P(Y_2\le [/mm] t) = [mm] t^n [/mm]

Wieso ist das hier [mm] t^n? [/mm]

Danke schon mal für eure Zeit
Corn


        
Bezug
Berechnung Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Mi 06.02.2008
Autor: luis52

Moin Corn,

>  
> [mm]P(Y_1[/mm] > t) =...
>  Kann mir jemand sagen, warum wir hier Y > t suchen?

Weil das einfacher zu rechnen ist. Spaeter erhalten wir [mm] $P(Y_1\le t)=1-(1-t)^n$. [/mm]  

>  
> [mm]P(Y_1[/mm] > t) = [mm]P(X_1[/mm] > [mm]t,...,X_n>t)[/mm]
>  
> wegen iid gilt jetzt
>  
> [mm]=P(X_1>t)^n[/mm]
>  
> = [mm](1-t)^n[/mm]
>  
> Warum kommt da [mm](1-t)^n[/mm] heraus?

Weil die Verteilungsfunktion von [mm] $X_1$ [/mm] gegeben ist durch [mm] $P(X_1\le [/mm] z)=z$
fuer $0<z<1$.
            

>  
> Für [mm]Y_2[/mm]
>  
> [mm]P(Y_2 \le[/mm] t) =...
>  Warum ist das hier Y [mm]\le[/mm] t? Das muß etwas damit zu tun
> haben, daß wir sonst nicht mehr in der U(0,1) Verteilung
> sind? Vermute ich mal so

Nein.

>  
> Wegen iid
>  = [mm]P(Y_2\le[/mm] t) = [mm]t^n[/mm]
>  
> Wieso ist das hier [mm]t^n?[/mm]

Hier ist $ [mm] P(Y_2 \le [/mm] t) =  [mm] P(X_1 \le t,...,X_n \le t)=P(X_1\le t)^n [/mm] $


vg Luis


Bezug
                
Bezug
Berechnung Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Do 07.02.2008
Autor: Corn

Hallo.

> > [mm]P(Y_1[/mm] > t) =...
>  >  Kann mir jemand sagen, warum wir hier Y > t suchen?

>  
> Weil das einfacher zu rechnen ist. Spaeter erhalten wir
> [mm]P(Y_1\le t)=1-(1-t)^n[/mm].  
> >  

> > [mm]P(Y_1[/mm] > t) = [mm]P(X_1[/mm] > [mm]t,...,X_n>t)[/mm]
>  >  
> > wegen iid gilt jetzt
>  >  
> > [mm]=P(X_1>t)^n[/mm]
>  >  
> > = [mm](1-t)^n[/mm]
>  >  
> > Warum kommt da [mm](1-t)^n[/mm] heraus?
>  
> Weil die Verteilungsfunktion von [mm]X_1[/mm] gegeben ist durch
> [mm]P(X_1\le z)=z[/mm]
>  fuer [mm]0

Aber es ist doch [mm] P(Y_1 [/mm] > t) = 1 - [mm] P(Y_1\le [/mm] t)
Und für [mm] P(Y_1 \le [/mm] t) gilt doch jetzt nach der Verteilungsfunktion [mm] X_1, [/mm] dass [mm] P(Y_1 \le [/mm] t) = t
Warum ist meine Überlegung falsch?

>              
> >  

> > Für [mm]Y_2[/mm]
>  >  
> > [mm]P(Y_2 \le[/mm] t) =...
>  >  Warum ist das hier Y [mm]\le[/mm] t? Das muß etwas damit zu tun
> > haben, daß wir sonst nicht mehr in der U(0,1) Verteilung
> > sind? Vermute ich mal so
>  
> Nein.

Warum denn dann? Ich dachte, daß wir nach [mm] Y_2 [/mm] kleiner gleich t suchen, weil man sonst aus der U(0,1) Verteilung herausfällt.

>  >  
> > Wegen iid
>  >  = [mm]P(Y_2\le[/mm] t) = [mm]t^n[/mm]
>  >  
> > Wieso ist das hier [mm]t^n?[/mm]
>  
> Hier ist [mm]P(Y_2 \le t) = P(X_1 \le t,...,X_n \le t)=P(X_1\le t)^n[/mm]

Hier bin ich mir gerade auch noch nicht so ganz sicher, weil ich den Zusammenhang zur [mm] Y_1 [/mm] nicht verstanden habe, und warum wir am Anfang [mm] Y_1 [/mm] > t nehmen. Das mit dem einfacherer Rechnen war zwar eine ganz witzige Antwort und die werde ich mir bei der Aufgabe auch so merken, im Endeffekt habe ich das Prinzip damit aber leider nicht verstanden.

Danke Dir
Corn

Bezug
                        
Bezug
Berechnung Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Do 07.02.2008
Autor: Blech


> Hier bin ich mir gerade auch noch nicht so ganz sicher,
> weil ich den Zusammenhang zur [mm]Y_1[/mm] nicht verstanden habe,
> und warum wir am Anfang [mm]Y_1[/mm] > t nehmen. Das mit dem
> einfacherer Rechnen war zwar eine ganz witzige Antwort und
> die werde ich mir bei der Aufgabe auch so merken, im
> Endeffekt habe ich das Prinzip damit aber leider nicht
> verstanden.

Dann überleg Dir halt mal selber, wie Du's rechnen würdest, dann siehst Du gleich warum man's so macht.

[mm] $P(\min_i\{X_i\}\le [/mm] k)$ ist die Wahrscheinlichkeit, daß *mindestens 1* der [mm] $X_i$ [/mm] kleiner k ist, d.h. Du mußt die Wahrscheinlichkeiten berechnen, daß genau 1 kleiner ist, daß genau 2 kleiner sind, daß genau 3 kleiner sind, daß gen.... Mach das mal für n=20 und wir sehen uns dann morgen wieder =)

Im Vergleich dazu ist [mm] $P(\min_i\{X_i\}> [/mm] k)$ die Wahrscheinlichkeit, daß *kein* [mm] $X_i$ [/mm] kleiner k, was wegen iid viel einfacher geht [mm] $=P(X_1>k)^n$ [/mm]




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]