matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieBerechnung des Integrals
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Maßtheorie" - Berechnung des Integrals
Berechnung des Integrals < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung des Integrals: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:16 Mo 18.12.2017
Autor: Son

Aufgabe
[mm] \Omega={1,...,10}, \mu:P( \Omega) [/mm] ->[0,∞] mit [mm] \mu(A)= \summe_{n\in A} \bruch{1}{n} [/mm] für A [mm] \subset \Omega. f:\Omega [/mm] -> [mm] \IR [/mm] , [mm] f(n)=-n^2 \forall [/mm] n [mm] \in \Omega. [/mm] Berechne falls ex. [mm] \integral_{\Omega} [/mm] f [mm] d\mu. [/mm]

Meine Lösung:
Ich hab gezeigt, dass f stetig ist -> f messbar und beschränkt -> f Lebesgue int'bar
Wir hatten auch, dass [mm] \integral_{\Omega} [/mm] f [mm] d\mu [/mm] = [mm] \summe_{n\in A} [/mm] f(n) [mm] \bruch{1}{n} [/mm] ist.
Am Ende hatte ich dann für [mm] \mu(A)= [/mm] - [mm] \summe_{n=1}^10 [/mm] n =-55.
Könnte das stimmen?

        
Bezug
Berechnung des Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 22:46 Mo 18.12.2017
Autor: fred97


> [mm]\Omega={1,...,10}, \mu:P( \Omega)[/mm] ->[0,∞] mit [mm]\mu(A)= \summe_{n\in A} \bruch{1}{n}[/mm]
> für A [mm]\subset \Omega. f:\Omega[/mm] -> [mm]\IR[/mm] , [mm]f(n)=-n^2 \forall[/mm]
> n [mm]\in \Omega.[/mm] Berechne falls ex. [mm]\integral_{\Omega}[/mm] f
> [mm]d\mu.[/mm]
>  Meine Lösung:
>  Ich hab gezeigt, dass f stetig ist

So, welche Topologie hast Du dabei auf [mm] \Omega [/mm] betrachtet?


-> f messbar und

> beschränkt -> f Lebesgue int'bar
>  Wir hatten auch, dass [mm]\integral_{\Omega}[/mm] f [mm]d\mu[/mm] =
> [mm]\summe_{n\in A}[/mm] f(n) [mm]\bruch{1}{n}[/mm] ist.

Hä ? Was ist denn A ?


>  Am Ende hatte ich dann für [mm]\mu(A)=[/mm] - [mm]\summe_{n=1}^10[/mm] n
> =-55.

Was ist  hier A ?. Obiges ist nicht  lesbar!


>  Könnte das stimmen?


Nein, in der schlampigen Form  nicht.




Bezug
                
Bezug
Berechnung des Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:54 Mo 18.12.2017
Autor: Son

Achso das ist nicht meine endgültige Lösung. Das ist nur meine Idee..
Also da sollte nicht überall A stehen sondern [mm] \Omega. [/mm]
Also am Ende hätte ich folgendes:
[mm] \integral_{\Omega} [/mm] f [mm] d\mu [/mm] = [mm] \summe_{n \in\Omega} [/mm] f(n) [mm] \bruch{1}{n} [/mm] = - [mm] \summe_{i=1}^{10} n^2=-55. [/mm]
Würde am Ende -55 rauskommen?

Bezug
                        
Bezug
Berechnung des Integrals: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:19 Di 19.12.2017
Autor: Son

Stimmt das Ergebnis?

Bezug
                        
Bezug
Berechnung des Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Di 19.12.2017
Autor: leduart

Hallo
notfalls kannst du doch [mm] \summe_{n=1)}^{10} n^2 [/mm]
direkt ausrechnen? 55 ist das nicht ,  das ist  [mm] \summe_{n=1)}^{10} [/mm] n=55
aber f(N*1/n ist auch nicht [mm] -n^2, [/mm] also ist dein Ergebnis  doch richtig, nur nicht das davor.
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]