matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungBerechnung einer Grenze
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Berechnung einer Grenze
Berechnung einer Grenze < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung einer Grenze: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:42 Fr 07.02.2014
Autor: wolfgangmax

Aufgabe
Rotiert ein Funktionsgraph über [a;b] um die x-Achse, so entsteht ein Rotationskörper, dessen Volumen V sich mit der Formel


berechnen lässt[mm]V= \pi* \int_{a}^{b}{(f(x))^2 dx}[/mm]   a= 0 b=11    Die Funktion f lautet: [mm]f(x)=xe^(1-0.2x)[/mm]

Der Eichstrich für 0,5 Liter soll eingetragen werden. Bestimmen Sie, wie viel Millimeter unter dem Rand der Eichstrich eingetragen werden soll.


Mein Lösungsansatz lautet:

[mm]0.5= \pi* \int_{0}^{b}{(f(x))^2 dx}[/mm]    Die Gleichung ist also nach b aufzulösen.

Wenn der Ansatz richtig ist, ergibt sich ein Lösungsweg von 2 eng beschriebenen Seiten, den ich allerdings nicht bis zuletzt berechnen kann. Zu einer Lösung b < 11 komme ich nicht.

Ich wäre schon zufrieden, wenn
- Sie mir Ihre Meinung zu meinem Ansatz mitteilen würden
- Sie mir eine Alternative nennen würden.

im Voraus herzlichen Dank und einen freundlichen Gruß

        
Bezug
Berechnung einer Grenze: Antwort
Status: (Antwort) fertig Status 
Datum: 11:54 Fr 07.02.2014
Autor: M.Rex

Hallo


> Rotiert ein Funktionsgraph über [a;b] um die x-Achse, so
> entsteht ein Rotationskörper, dessen Volumen V sich mit
> der Formel

>
>

> berechnen lässt[mm]V= \pi* \int_{a}^{b}{(f(x))^2 dx}[/mm]  

Das ist in der Tat die übliche Formel für das Rotationsvolumen des Körpers, der entsteht, wenn die Funktiion f auf dem Intervall [a;b] um die x-Achse rotiert.

> a= 0
> b=11    Die Funktion f lautet: [mm]f(x)=xe^(1-0.2x)[/mm]



>

> Der Eichstrich für 0,5 Liter soll eingetragen werden.
> Bestimmen Sie, wie viel Millimeter unter dem Rand der
> Eichstrich eingetragen werden soll.

>

> Mein Lösungsansatz lautet:

>

> [mm]0.5= \pi* \int_{0}^{b}{(f(x))^2 dx}[/mm]    Die Gleichung ist
> also nach b aufzulösen.

Das ist auch korrekt.

Du bekommst also:

[mm] V=\pi\cdot\int\limits_{0}^{b}\left(x\cdot e^{1-0,2x}\right)^{2}dx [/mm]
[mm] =\pi\cdot\int\limits_{0}^{b}x^{2}\cdot\left(e^{1-0,2x}\right)^{2}dx [/mm]
[mm] =\pi\cdot\int\limits_{0}^{b}x^{2}\cdot e^{(1-0,2x)\cdot2}dx [/mm]
[mm] =\pi\cdot\int\limits_{0}^{b}x^{2}\cdot e^{2-0,4x}dx [/mm]

Das würde ich mit zweifacher partieller Integration lösen.

[mm] \int\underbrace{x^{2}}_{u}\cdot\underbrace{e^{2-0,4x}}_{v'}dx [/mm]
[mm] =\underbrace{x^{2}}_{u}\cdot\underbrace{\frac{1}{-0,4}e^{2-0,4x}}_{v}-\int\underbrace{2x}_{u'}\cdot\underbrace{\frac{1}{-0,4}e^{2-0,4x}}_{v}dx [/mm]
[mm] =-\frac{5}{2}\cdot x^{2}e^{2-0,4x}-\int-5x\cdot e^{2-0,4x}dx [/mm]
[mm] =-\frac{5}{2}\cdot x^{2}e^{2-0,4x}+5\cdot\int x\cdot e^{2-0,4x}dx [/mm]

Das Integral [mm] \int x\cdot e^{2-0,4x}dx [/mm] kannst du nun wieder per partieller Integration lösen
[mm] \int\underbrace{x}_{u}\cdot\underbrace{e^{2-0,4x}}_{v'}dx=\ldots [/mm]

Damit bestimme zuerst mal die Stammfunktion zu deiner Funktion [mm] g(x):=x^{2}\cdot e^{2-0,4x} [/mm]

>

> Wenn der Ansatz richtig ist, ergibt sich ein Lösungsweg
> von 2 eng beschriebenen Seiten, den ich allerdings nicht
> bis zuletzt berechnen kann. Zu einer Lösung b < 11 komme
> ich nicht.

>

> Ich wäre schon zufrieden, wenn
> - Sie mir Ihre Meinung zu meinem Ansatz mitteilen würden
> - Sie mir eine Alternative nennen würden.

>

> im Voraus herzlichen Dank und einen freundlichen Gruß

Marius

Bezug
                
Bezug
Berechnung einer Grenze: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Fr 07.02.2014
Autor: Marcel

Hallo Marius,

  

> [mm]\int\underbrace{x}_{u}\cdot\underbrace{e^{2-0,4x}}_{v'}dx=\ldots[/mm]
>  
> Damit bestimme zuerst mal die Stammfunktion zu deiner
> Funktion [mm]g(x):=x^{2}\cdot e^{2-0,4x}[/mm]

bitte nie von DER Stammfunktion reden: EINE!

Gruß,
  Marcel

Bezug
        
Bezug
Berechnung einer Grenze: Zusatz-Info
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:17 Fr 07.02.2014
Autor: Diophant

Hallo wolfgangmax,

du hast in letzter Zeit einige Fragen zum gleichen Funktionstyp gestellt. Mir sieht das nach Abi-Aufgaben aus irgendeinem deutschen Bundesland aus. Von uns hier (Baden-Württemberg) kenne ich diesen Aufgabentyp aus dem sog. Wahlteil, in dem als Hilfsmittel moderne grafikfähige Taschenrechner zugelassen sind, die unter anderem numerische Berechnungen mit Integralfunktionen durchführen können. Ich bin mir relativ sicher, dass dies im vorliegenden Fall auch so angedacht ist. Man kann das hier analytisch auf dem von M.Rex skizzierten Weg lösen, aber je nachdem, wofür du die Antwort hier benötigst, wollte ich auf diese Problematik zur Info einfach hinweisen.

Gruß, Diophant

Bezug
        
Bezug
Berechnung einer Grenze: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Fr 07.02.2014
Autor: fred97

Ergänzend zu Diophant und M.Rex:

Die Gleichung

    

$ 0.5= [mm] \pi\cdot{} \int_{0}^{b}{(f(x))^2 dx} [/mm] $  

führt (mit dem Weg von M.Rex) auf eine Gleichung, die sich nicht "von Hand" nach b auflösen lässt.



FRED

Bezug
                
Bezug
Berechnung einer Grenze: Dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:43 Fr 07.02.2014
Autor: wolfgangmax

Allen. die sich mit meinem Problem rumgeschlagen haben, herzlichen Dank! Ihr seid Super

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]