matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikBerechnung v. Wahrscheinlichk
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - Berechnung v. Wahrscheinlichk
Berechnung v. Wahrscheinlichk < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung v. Wahrscheinlichk: Erklärung
Status: (Frage) beantwortet Status 
Datum: 22:00 Di 08.01.2013
Autor: MatheSckell

Aufgabe
Ein regionaler Rundfunksender veranstaltet das Spiel "Heiteres Kandidatenraten", wobei man einen Begriff erraten soll. Ein Hörer ist sich sicher, das Lösungswort zu kennen und ruft beim Sender an. Dabei dringt man mit einer Wahrscheinlichkeit von 0,05 bis zu einer Warteschleife vor. Die Wahrscheinlichkeit, dass der Zufallsgenerator den Anrufer aus der Warteschleife heraus auswählt, beträgt [mm] \bruch{1}{60}. [/mm]

Berechnen Sie die Wahrscheinlichkeit, höchstens 2 Anrufe, höchstens 3 Anrufe bzw. höchstens n Anrufe für die Mitteilung der richtigen Lösung zu benötigen.



Ich weiß, dass man natürlich [mm]P(X\le2)[/mm] bzw.  [mm]P(X\le3)[/mm] bzw.  [mm]P(X\le n)[/mm] rechnen muss.
In der Lösung steht:

[mm] p=0,05*\bruch{1}{60} [/mm]

[mm]q=1- p = \bruch{1199}{1200}[/mm]

[mm]P(X\le2) = 1-P(X>2) = 1-q^{2}[/mm]

und

[mm]P(X\le3) = 1-P(X>3) = 1-q^{3}[/mm]

und

[mm]P(X\len) = 1-P(X>n) = 1-q^{n}[/mm]

Die Ergebnisse sind eher unwichtig für mich. Ich verstehe nicht, wieso [mm]P(X>n) = q^{n}[/mm] bzw. [mm]1-P(X>n) = 1-q^{n}[/mm].

Das Gegenereignis von "höchstens 2 Anrufe" ist "mehr als 2 Anrufe". Wieso wird mindestens 2 Anrufe durch [mm] q^{2} [/mm] dargestellt? Wären das nicht genau 2 Anrufe?

Danke im Voraus

        
Bezug
Berechnung v. Wahrscheinlichk: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:08 Di 08.01.2013
Autor: MatheSckell

Es muss oben "Ich weiß, dass man natürlich [mm]P(X\le2)[/mm] bzw. [mm]P(X\le3)[/mm]  bzw. [mm]P(X\le n)[/mm] rechnen muss. " heißen

Bezug
        
Bezug
Berechnung v. Wahrscheinlichk: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Di 08.01.2013
Autor: ahnungsloser86

Bei dieser Aufgabe handelt es sich um eine Geometrische Verteilung. Das heißt man zählt die Versuche die notwendig sind bis man einen Erfolg hat.
Für die Wahrscheinlichkeit im k-ten Versuch Erfolg zu haben gilt:

[mm] P(X=k)=p*q^k [/mm]

Für die Wahscheinlichkeit mehr als k Versuche zu benötigen gilt dann:

[mm] P(X>k)=q^k [/mm]

Dieser Zusammenhang gilt allgemein bei Geometrischen Verteilungen und wird zb. im Mathe-Studium bewiesen. Ich glaube von Schülern wird eher erwartet, dass sie erkennen das es sich um eine Geometrische Verteilung handelt und die richtige Formel benutzen.

Aber man kann auch anders auf die Lösung kommen. zb für [mm] P(X\le2): [/mm]
Das entspricht den Ereignissen direkt beim ersten mal oder beim zweitem Versuch durchzukommen. Also:

[mm] P(X\le2)= [/mm] P(X=1) + P(X=2) = p + p*q = p + (1-p)*p= p + p - [mm] p^2 [/mm] = [mm] -p^2 [/mm] +2p - 1 + 1 = [mm] -(1-2p+p^2) [/mm] +1 = [mm] -(1-p)^2 [/mm] +1 = [mm] -q^2 [/mm] +1 = [mm] 1-q^2 [/mm]

Für [mm] P(X\le3) [/mm] kann man analog vorgehen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]