matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesBerechnung von Lambda
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Berechnung von Lambda
Berechnung von Lambda < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung von Lambda: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Fr 25.01.2013
Autor: mbau16

Guten Abend zusammen,

habe eine Frage an Euch. Grundsätzlich ist dies eine technische Frage, allerdings habe ich ein mathematisches Problem!

Dies ist eine neue Version meiner Frage, die alte ist nicht zu beachten!

Geg:

[mm] T_{w1}=517,15 [/mm]

[mm] T_{w2}=288,15 [/mm]

[mm] \lambda_{1}=3,79 [/mm]

[mm] \lambda_{2}=6,71 [/mm]

Ich möchte [mm] \lambda_{m} [/mm] berechnen.

[mm] \lambda_{m}=\bruch{1}{T_{w2}-T_{w1}}\integral_{T_{w1}}^{T_{w2}}{\lambda(T) dT} [/mm]

[mm] \lambda=\bruch{A}{B+0,15T} [/mm]

A und B seien Konstanten.

[mm] \lambda_{m}=\bruch{1}{288,15-517,15}\integral_{517,15}^{288,15}{\bruch{A}{B+0,15T} dT} [/mm]

Ich weiß nur, dass A und B konstant sind, habe aber keine Werte gegeben.

Wie verfahre ich am besten weiter, um an eine Lösung zu kommen.

Konstante kann ich ja immer vor das Integral ziehen, dass ist klar.


Ich würde mich sehr über Eure Hilfe freuen, diese Aufgabe zu lösen!

Vielen, vielen Dank!

Gruß

mbau16


        
Bezug
Berechnung von Lambda: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Fr 25.01.2013
Autor: abakus


> Keine konkrete Aufgabenstellung
>  Guten Abend zusammen,
>  
> habe eine Frage an Euch. Grundsätzlich ist dies eine
> technische Frage, allerdings habe ich ein mathematisches
> Problem!
>  
> Ich möchte [mm]\lambda[/mm] berechnen.
>  
> [mm]\lambda=\bruch{A}{B+0,15T}[/mm]
>  
> A und B seien Konstanten.
>  
> Gegeben habe ich (unabhängig von Einheiten):
>  
> [mm]T_{1}=244[/mm]
>  
> [mm]T_{2}=15[/mm]
>  
> [mm]\lambda_{1}=3,79[/mm]
>  
> [mm]\lambda_{2}=6,71[/mm]
>  
> Wie komme ich jetzt an [mm]\lambda?[/mm] Ich habe keine Idee!
>  
> Würde mich sehr über Hilfe freuen!
>  
> Gruß
>  
> mbau16

Wie wäre es mit ein paar Hintergrundinformationen???
Setze A, B und T in die Gleichung ein, und du hast [mm] $\lambda$. [/mm]
Aber das beantwortet sicher nicht deine Frage.

In welcher Beziehung stehen [mm] $\lambda_1$ [/mm] und [mm] $\lambda_2$ [/mm] zu [mm] "$\lambda$"? [/mm]
Was ist der Unterschied zwischen [mm] $T_1$, $T_2$ [/mm] und $T$?

Gruß Abakus


Bezug
        
Bezug
Berechnung von Lambda: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 Fr 25.01.2013
Autor: mbau16


> Guten Abend zusammen,
>  
> habe eine Frage an Euch. Grundsätzlich ist dies eine
> technische Frage, allerdings habe ich ein mathematisches
> Problem!
>  

Dies ist eine neue Version meiner Frage, die alte ist nicht zu beachten!

>  
> Geg:
>  
> [mm]T_{w1}=517,15[/mm]
>  
> [mm]T_{w2}=288,15[/mm]
>  
> [mm]\lambda_{1}=3,79[/mm]
>  
> [mm]\lambda_{2}=6,71[/mm]
>  
> Ich möchte [mm]\lambda_{m}[/mm] berechnen.
>  
> [mm]\lambda_{m}=\bruch{1}{T_{w2}-T_{w1}}\integral_{T_{w1}}^{T_{w2}}{\lambda(T) dT}[/mm]
>  
> [mm]\lambda=\bruch{A}{B+0,15T}[/mm]
>  
> A und B seien Konstanten.
>  
> [mm]\lambda_{m}=\bruch{1}{288,15-517,15}\integral_{517,15}^{288,15}{\bruch{A}{B+0,15T} dT}[/mm]
>  
> Ich weiß nur, dass A und B konstant sind, habe aber keine
> Werte gegeben.
>  
> Wie verfahre ich am besten weiter, um an eine Lösung zu
> kommen.
>
> Konstante kann ich ja immer vor das Integral ziehen, dass
> ist klar.
>  
>
> Ich würde mich sehr über Eure Hilfe freuen, diese Aufgabe
> zu lösen!
>  
> Vielen, vielen Dank!
>  
> Gruß
>  
> mbau16
>  
>  


Bezug
                
Bezug
Berechnung von Lambda: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Fr 25.01.2013
Autor: MathePower

Hallo mbau16,

> > Guten Abend zusammen,
>  >  
> > habe eine Frage an Euch. Grundsätzlich ist dies eine
> > technische Frage, allerdings habe ich ein mathematisches
> > Problem!
>  >  
> Dies ist eine neue Version meiner Frage, die alte ist nicht
> zu beachten!
>  >  
> > Geg:
>  >  
> > [mm]T_{w1}=517,15[/mm]
>  >  
> > [mm]T_{w2}=288,15[/mm]
>  >  
> > [mm]\lambda_{1}=3,79[/mm]
>  >  
> > [mm]\lambda_{2}=6,71[/mm]
>  >  
> > Ich möchte [mm]\lambda_{m}[/mm] berechnen.
>  >  
> >
> [mm]\lambda_{m}=\bruch{1}{T_{w2}-T_{w1}}\integral_{T_{w1}}^{T_{w2}}{\lambda(T) dT}[/mm]
>  
> >  

> > [mm]\lambda=\bruch{A}{B+0,15T}[/mm]
>  >  
> > A und B seien Konstanten.
>  >  
> >
> [mm]\lambda_{m}=\bruch{1}{288,15-517,15}\integral_{517,15}^{288,15}{\bruch{A}{B+0,15T} dT}[/mm]
>  
> >  

> > Ich weiß nur, dass A und B konstant sind, habe aber keine
> > Werte gegeben.
>  >  
> > Wie verfahre ich am besten weiter, um an eine Lösung zu
> > kommen.
> >
> > Konstante kann ich ja immer vor das Integral ziehen, dass
> > ist klar.
>  >  
> >
> > Ich würde mich sehr über Eure Hilfe freuen, diese Aufgabe
> > zu lösen!
>  >  
> > Vielen, vielen Dank!
>  >  
> > Gruß
>  >  
> > mbau16
>  >  
> >  

>  


Intuitiv müssen doch die Paare [mm]\left(T_{w1},\lambda_{1}\right)[/mm] und  [mm]\left(T_{w2},\lambda_{2}\right)[/mm] der Gleichung

[mm]\lambda=\bruch{A}{B+0,15*T}[/mm]

genügen.

Daraus lassen sich die Konstanten A und B ermitteln.


Gruss
MathePower

Bezug
        
Bezug
Berechnung von Lambda: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Fr 25.01.2013
Autor: Richie1401

Hallo mbau16,

du kannst doch das Integral trotz vorhandenen Konstanten schlicht und ergreifend lösen.

Es ist doch allgemein bekannt, dass
[mm] \int\frac{A}{B+Cx}dx=A*\frac{1}{C}\log{(B+Cx)}+const [/mm]
gilt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]