matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBernoulli
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Bernoulli
Bernoulli < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 11:26 Fr 04.03.2016
Autor: Piba

Aufgabe
Sei a [mm] \ge [/mm] 1. Wenden Sie die Bernoulli-Ungleichung auf a = (1 + [mm] \wurzel[n]{a} [/mm] - [mm] 1)^n [/mm] an. Folgern Sie [mm] \limes_{n\rightarrow\infty} \wurzel[n]{a} [/mm] = 1

Guten Tag, ich habe versucht mit der Bernoulli-Ungleichung zu rechnen, komme da aber nicht vernünftig weiter. Kann mir da einer bei Helfen?

$a = (1 + [mm] \wurzel[n]{a} [/mm] - [mm] 1)^n \underbrace{\ge}_{Bernoulli-Ungleichung} [/mm] 1 + [mm] (\wurzel[n]{a} [/mm] - 1) * n = 1 + [mm] \wurzel[n]{a} [/mm] * n - n$

Ich würde sagen, je größer $n$ ist, desto näher kommt a and die 1 kommt. [mm] \Rightarrow [/mm] 1 + (a * n - n) = 1 + (1 * n - n) = 1 + (n - n) = 1 + 0 = 1. Daraus können wir folgern, dass [mm] $\limes_{n\rightarrow\infty} \wurzel[n]{a} [/mm] = 1? ist.

        
Bezug
Bernoulli: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 Fr 04.03.2016
Autor: fred97


> Sei a [mm]\ge[/mm] 1. Wenden Sie die Bernoulli-Ungleichung auf a =
> (1 + [mm]\wurzel[n]{a}[/mm] - [mm]1)^n[/mm] an. Folgern Sie
> [mm]\limes_{n\rightarrow\infty} \wurzel[n]{a}[/mm] = 1
>  Guten Tag, ich habe versucht mit der Bernoulli-Ungleichung
> zu rechnen, komme da aber nicht vernünftig weiter. Kann
> mir da einer bei Helfen?
>  
> [mm]a = (1 + \wurzel[n]{a} - 1)^n \underbrace{\ge}_{Bernoulli-Ungleichung} 1 + (\wurzel[n]{a} - 1) * n = 1 + \wurzel[n]{a} * n - n[/mm]
>  
> Ich würde sagen, je größer $n$ ist, desto näher kommt a
> and die 1 kommt.

Hä ???  a ist doch fest !!!

> [mm]\Rightarrow[/mm] 1 + (a * n - n) = 1 + (1 * n -
> n) = 1 + (n - n) = 1 + 0 = 1.


Mit Verlaub, aber das ist großer Unsinn !


> Daraus können wir folgern,
> dass [mm]$\limes_{n\rightarrow\infty} \wurzel[n]{a}[/mm] = 1? ist.

Ganz bestimmt nicht.

Wir hatten doch:

  $a [mm] \ge [/mm]  1 + [mm] \wurzel[n]{a} [/mm] * n - n$

Es folgt:

$a [mm] \ge [/mm]  1 + [mm] \wurzel[n]{a} [/mm] * n - [mm] n=1+n(\wurzel[n]{a}-1)$ [/mm]

Daraus bekommen wir

$0 [mm] \le \wurzel[n]{a}-1 \le \bruch{a-1}{n}$ [/mm]  für alle $n [mm] \in \IN$ [/mm]


Jetzt mach Du weiter.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]