matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenBernstein-Polynome
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - Bernstein-Polynome
Bernstein-Polynome < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernstein-Polynome: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:19 Sa 19.11.2011
Autor: derahnungslose

Aufgabe
Wir betrachten den Vektorraum Pol4 [mm] \IR:= \{ \summe_{j=0}^{4} ajX^j| aj \in \IR\} [/mm] der reellen Polynome vom Grad höchstens 4.
Zeigen Sie,dass die durch
[mm] bk(X):=\vektor{4 \\ k}(1-X)^{4-k}*X^k [/mm]
definierten Bernstein-Polynome b0,b1,b2,b3,b4 eine Basis des Vektorraums Pol4 [mm] \IR [/mm] bilden. Geben Sie für die Polynome p,q,r mit p(X)=1, [mm] q(X)=X^2 [/mm] und [mm] r(X)=X^4 [/mm] die Koordinatentupel Bp, Bq und Br bezüglich der Basis B: b0,b1,b2,b3,b4 an.

Hallo Leute,
sitze gerade vor meinen Hausaufgaben und komme nicht weiter. Bin mal wieder ziemlich ahnungslos. Ich habe überhaupt keinen Ansatz. Hab mir jetzt nur aufgeschrieben wie b0...b4 aussieht, wenn man es aussrechnet:

b0= [mm] x^4-4x^3+6x^2-4x+1 [/mm]
[mm] b1=-4x^4+12x^3-12x^2+4x [/mm]
[mm] b2=6x^4-12x^3+6x^2 [/mm]
[mm] b3=-4x^4+4x^3 [/mm]
[mm] b4=x^4 [/mm]

bringt mir das was?? DANKE

        
Bezug
Bernstein-Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Sa 19.11.2011
Autor: MathePower

Hallo derahnungslose,

> Wir betrachten den Vektorraum Pol4 [mm]\IR:= \{ \summe_{j=0}^{4} ajX^j| aj \in \IR\}[/mm]
> der reellen Polynome vom Grad höchstens 4.
>  Zeigen Sie,dass die durch
>   [mm]bk(X):=\vektor{4 \\ k}(1-X)^{4-k}*X^k[/mm]
>  definierten
> Bernstein-Polynome b0,b1,b2,b3,b4 eine Basis des
> Vektorraums Pol4 [mm]\IR[/mm] bilden. Geben Sie für die Polynome
> p,q,r mit p(X)=1, [mm]q(X)=X^2[/mm] und [mm]r(X)=X^4[/mm] die
> Koordinatentupel Bp, Bq und Br bezüglich der Basis B:
> b0,b1,b2,b3,b4 an.
>  Hallo Leute,
>  sitze gerade vor meinen Hausaufgaben und komme nicht
> weiter. Bin mal wieder ziemlich ahnungslos. Ich habe
> überhaupt keinen Ansatz. Hab mir jetzt nur aufgeschrieben
> wie b0...b4 aussieht, wenn man es aussrechnet:
>  
> b0= [mm]x^4-4x^3+6x^2-4x+1[/mm]
>  [mm]b1=-4x^4+12x^3-12x^2+4x[/mm]
>  [mm]b2=6x^4-12x^3+6x^2[/mm]
>  [mm]b3=-4x^4+4x^3[/mm]
>  [mm]b4=x^4[/mm]
>  
> bringt mir das was?? DANKE


Ja, durch die Bedingungsgleichung für lineare Unabhängigkeit
kannst Du nachweisen, daß diese Polynome eine Basis bilden,
in dem Du das zurückführst auf die lineare Unabhängigkeit der
Polynome [mm]1, \ x, \ x^{2}, \ x^{3}, \ x^{4}[/mm].


Gruss
MathePower

Bezug
                
Bezug
Bernstein-Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Sa 19.11.2011
Autor: derahnungslose

Wie stelle ich so ein LGS auf? Normalerweise habe ich Vektoren, die kann ich schön in eine Matrix umformen und guck ob ich eine Lösung raus bekommen oder es nur trivial geht (ist ja auch ne Lösung...).


Bezug
                        
Bezug
Bernstein-Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Sa 19.11.2011
Autor: MathePower

Hallo derahnungslose,

> Wie stelle ich so ein LGS auf? Normalerweise habe ich
> Vektoren, die kann ich schön in eine Matrix umformen und
> guck ob ich eine Lösung raus bekommen oder es nur trivial
> geht (ist ja auch ne Lösung...).
>  


Hier stellst Du zunächst die Bedingungsgleichung auf:

[mm]a_{0}*b_{0}\left(x\right)+a_{1}*b_{1}\left(x\right)+a_{2}*b_{2}\left(x\right)+a_{3}*b_{3}\left(x\right)+a_{4}*b_{4}\left(x\right)=0[/mm]

Dann sortierst Du das nach x-Potenzen:

[mm]\alpha_{0}*x^{0}+\alpha_{1}*x^{1}+\alpha_{2}*x^{2}+\alpha_{3}*x^{3}+\alpha_{4}*x^{4}=0[/mm]

Diese Polynome [mm]x^{k}, \ k=0 ... 4[/mm] sind linear unabhängig,
so daß [mm]\alpha_{k}=0, \ k=0 ... 4[/mm] gelten muss.
Daraus ergibt sich ein LGS für die [mm]a_{k}, \ k=0 ... 4[/mm]
Dann musst Du zeigen, daß dieses LGS nur die Lösung
[mm]a_{k} =0, \ k=0 ... 4[/mm] besitzt.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]