matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBeschränkte Folgen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Beschränkte Folgen
Beschränkte Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränkte Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Mo 13.09.2010
Autor: G-Hoernle

Aufgabe
Wann ist eine Folge konvergent?

Ich habe hier 2 verschiedene Definitionen:

1: Es gibt eine obere (S1) und eine untere (S2) Schranke [mm] \in \IR, [/mm] sodass [mm] \forall [/mm] n [mm] \in \IN [/mm] : S1 <= [mm] a_{n} [/mm] <= S2

2: Es gibt eine Schranke S [mm] \in \IR, [/mm] sodass [mm] \forall [/mm] n [mm] \in \IN [/mm] : [mm] |a_{n}| [/mm] <= S

Besagt die zweite Definition nicht etwas anderes als die erste, bzw. ist die zweite nicht zu ungenau? Beispielsweise haben wir nach Def. 1 eine Folge mit oberer Schranke 2 und unterer 0, dann wäre nach Def. 2 die "untere Schranke" -2.

Gruß
GHoernle


        
Bezug
Beschränkte Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Mo 13.09.2010
Autor: schachuzipus

Hallo GHoernle,

> Wann ist eine Folge konvergent?
> Ich habe hier 2 verschiedene Definitionen:

Aber nicht für "konvergent" - du meinst beschränkt"

>
> 1: Es gibt eine obere (S1) und eine untere (S2) Schranke
> [mm]\in \IR,[/mm] sodass [mm]\forall[/mm] n [mm]\in \IN[/mm] : S1 <= [mm]a_{n}[/mm] <= S2
>
> 2: Es gibt eine Schranke S [mm]\in \IR,[/mm] sodass [mm]\forall[/mm] n [mm]\in \IN[/mm]
> : [mm]|a_{n}|[/mm] <= S
>
> Besagt die zweite Definition nicht etwas anderes als die
> erste, bzw. ist die zweite nicht zu ungenau? Beispielsweise
> haben wir nach Def. 1 eine Folge mit oberer Schranke 2 und
> unterer 0, dann wäre nach Def. 2 die "untere Schranke" -2.

Es gibt ja nicht "die" untere Schranke.

In der ersten Definition können [mm]s_1[/mm] und [mm]s_2[/mm] durchaus betraglich verschieden sein.

Wenn du in der ersten Definition mit [mm]s_1[/mm] eine untere Schranke gegeben hast, so ist jede kleinere Zahl [mm]s_0\le s_1[/mm] ja ebenfalls eine untere Schranke.

Ebenso nach oben hin, jede Zahl [mm]s_3\ge s_2[/mm] ist ebenfalls obere Schranke.

In der zweiten Definition wählt man eine Schranke [mm]s\ge 0[/mm] so, dass [mm]s[/mm] obere Schranke und [mm]-s[/mm] untere Schranke ist:

Es ist ja [mm]|a_n|=a_n[/mm] für [mm]a_n\ge 0[/mm] und [mm]|a_n|=-a_n[/mm] für [mm]a_n<0[/mm]

Also [mm]|a_n|\le s\gdw a_n\le s[/mm] falls [mm]a_n\ge 0[/mm]

und [mm]|a_n|\le s\gdw -a_n\le s\gdw a_n\ge -s[/mm] falls [mm]a_n<0[/mm]

Zusammen [mm]-s\le a_n\le s[/mm]

Das ist also ein "Spezialfall" von der ersten Def. mit [mm]s_1=-s[/mm] und [mm]s_2=s[/mm]

>
> Gruß
> GHoernle
>

LG

schachuzipus

Bezug
                
Bezug
Beschränkte Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:09 Di 14.09.2010
Autor: G-Hoernle

Ich meinte tatsächlich beschränkt, sorry :)

Damit ist meine Frage beantwortet, danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]