matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationBeschränkte Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Beschränkte Funktion
Beschränkte Funktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränkte Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:19 Mi 24.03.2010
Autor: Pidgin

Aufgabe
Nehme an das I ein nichtleeres offenes Intervall ist und das f beschränkt und C^unendlich auf I ist. Wenn ein M > 0 existiert, so dass [mm] |f^{(k)}(x)| \leq [/mm] Mk  [mm] \forall [/mm] x [mm] \in [/mm] I und k genügend groß ist, und wenn a,b [mm] \in [/mm] I existieren, so dass [mm] \int\limits_a^b f(x)x^n [/mm] dx = 0 für n = 0, 1, ... gilt, dann beweise dass f identisch Null auf [a,b] ist.

Ich hab leider keine Ahnung wie ich an diese Aufgabe herangehen soll. Ich habs mal mit partieller Integration probiert, aber da bin ich leider nicht weitergekommen. Hat jemand eine Idee? Wäre dankbar für jede Hilfe.

        
Bezug
Beschränkte Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:23 Mi 24.03.2010
Autor: fred97

Sei [mm] x_0 \in [/mm] I fest. Sei [mm] T_n [/mm] das n-te Taylorpolynom von f (Entw.-Punkt [mm] x_0). [/mm] Sei x [mm] \in [/mm] I.

Nach dem Satz von Taylor ex. ein [mm] \xi [/mm] zwischen [mm] x_0 [/mm] und x mit:

             $f(x) [mm] -T_n(x)= \bruch{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$ [/mm]

Mit der Vor. $ [mm] |f^{(k)}(x)| \leq [/mm] $ Mk  $ [mm] \forall [/mm] $ x $ [mm] \in [/mm] $ I und k genügend groß, zeige nun:

                 [mm] $T_n(x) \to [/mm] f(x)$ für $n [mm] \to \infty$ [/mm]

D.h.:   (*)     $f(x) = [mm] \summe_{n=0}^{\infty}a_n(x-x_0)^n$ [/mm] für jedes x [mm] \in [/mm] I,

wobei [mm] a_n= \bruch{f^{(n)}(x_0)}{n!}. [/mm] Die Potenzreihe rechts in (*) konvergiert auf [a,b]  gleichmäßig gegen f.

Dann konvergiert auch


(**)  [mm] \summe_{n=0}^{\infty}a_nf(x)(x-x_0)^n [/mm]  

auf [a,b]  gleichmäßig gegen [mm] f^2. [/mm] Berechne damit und mit der Vor. $ [mm] \int\limits_a^b f(x)x^n [/mm] $ dx = 0 für n = 0, 1, ...  mal das Integral [mm] \integral_{a}^{b}{f(x)^2 dx} [/mm]


FRED



Bezug
        
Bezug
Beschränkte Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:39 Mi 24.03.2010
Autor: fred97

Es geht unter weit schwächeren Voraussetzungen, wenn man den Approximationssatz von Weierstraß zur Verfügung hat.

Behauptung: Ist f [mm] \in [/mm] C[a,b] und gilt  $ [mm] \int\limits_a^b f(x)x^n [/mm] $ dx = 0 für n = 0, 1, ..., so ist f identisch Null auf [a,b] .

Beweis: aus dem Approximationssatz von Weierstraß erhlten wir eine Folge [mm] (p_n) [/mm] von Polynomen , welche auf [a,b]  gleichmäßig gegen f konvergiert. Dann konvergiert die Folge [mm] (fp_n) [/mm] auf [a,b] gleichmäßig gegen [mm] f^2. [/mm] Nach Vor. ist [mm] \integral_{a}^{b}{p_nf(x) dx}=0 [/mm] für jedes n, somit

   [mm] \integral_{a}^{b}{f(x)^2 dx}= [/mm] lim [mm] \integral_{a}^{b}{p_nf(x) dx}=0 [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]