matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenBeschränktes Wachstum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Beschränktes Wachstum
Beschränktes Wachstum < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränktes Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:30 Do 10.01.2008
Autor: tahaner

Hallo an alle,

Ich brauche dringend eure Hilfe, um die Herleitung des Beschräntes Wachstum vollständig zu verstehen.....

Vielen Dank im Voraus!!!!

f '(t) = k(G – f(t))

Aus dieser "Differenzialgleichung des beschränkten Wachstums" folgt durch Umformung

- f '(t)/ G - f(t) = - k

und durch Integration

ln (G – f(t))= – kt + c

oder

G – f(t) = e – kt + c

Mit [mm] e^c [/mm] = a erhalten wir somit für den Bestand zur Zeit t :


f(t) = G – a · e – kt (k > 0)


Meine Frage ist (bei rotgefärbten): wieso muss die Minus davorne bei der Umformung??? Habt Ihr dafür eine (simple) Erklärung?


Vielen Vielen Dank

mfg,

tahaner

Quelle : http://sites.inka.de/picasso/Frank/PRO1.html




        
Bezug
Beschränktes Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 01:07 Do 10.01.2008
Autor: leduart

Hallo tahaner
!!

>  
> f '(t) = k(G – f(t))
>  
> Aus dieser "Differenzialgleichung des beschränkten
> Wachstums" folgt durch Umformung

Das ist nur gemacht, weil man
- f '(t)/ G - f(t) =f'/(f-G) leichter integrieren kann!
es wurde einfach die Gleichung mit -1 multipliziert. aber es geht genausogut mit
f'/(G-f)=k
integriert: -ln(G-f)=k*t+C1    daraus ln(G-f)=-kt-C1   und C1=-C wieder die alte Formel!

>  
> - f '(t)/ G - f(t) = - k
>
> und durch Integration
>  
> ln (G – f(t))= – kt + c
>  
> oder
>  
> G – f(t) = e – kt + c
>  
> Mit [mm]e^c[/mm] = a erhalten wir somit für den Bestand zur Zeit t
> :
>  
>
> f(t) = G – a · e – kt (k > 0)
>  
>
> Meine Frage ist (bei rotgefärbten): wieso muss die Minus
> davorne bei der Umformung??? Habt Ihr dafür eine (simple)
> Erklärung?

>
Klar?
Gruss leduart

Bezug
                
Bezug
Beschränktes Wachstum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:37 Do 10.01.2008
Autor: tahaner



Aha! Hab verstanden.....


Vielen Dank



mfg,

tahaner

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]