matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenBeschreibung einer Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Geraden und Ebenen" - Beschreibung einer Ebene
Beschreibung einer Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschreibung einer Ebene: Idee
Status: (Frage) beantwortet Status 
Datum: 11:12 Fr 08.04.2016
Autor: JennMaus

Aufgabe
Gegeben ist die Ebene E mit der Parametergleichung
E: [mm] \vec{x} [/mm] = r * [mm] \pmat{ 1 \\ 1 \\ 1 } [/mm] + s * [mm] \pmat{ -1 \\ -1 \\ 1 } [/mm] .

Beschreiben Sie die Lage der Ebene E im Koordinatensystem.

Hallo,

im Grunde kann ich aus dieser Gleichung nur herauslesen, dass sie durch den Ursprung geht. Sie ist weder parallel zu irgendeiner [mm] x_1, x_2 [/mm] oder [mm] x_1, x_3 [/mm] oder [mm] x_2,x_3 [/mm] -Ebene. Daher weiß ich nicht, in wie weit ich sie noch näher beschreiben könnte?!

        
Bezug
Beschreibung einer Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 11:38 Fr 08.04.2016
Autor: Event_Horizon

Hallo!

Du hast recht, die Grade geht durch den Ursprung.

So Standard-Dinge, die man noch prüfen kann, sind die Schnittpunkte mit den Achsen oder Schnittgraden mit den Koordinatenebenen. Dabei kommen meistens nur relativ krumme, langweilige  Dinge 'raus, aber manchmal findet man doch Besonderheiten wie Parallelitäten zu Achsen oder Koordinatenebenen etc. Auch bei dieser Ebene wirst du fündig werden!



Bezug
        
Bezug
Beschreibung einer Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Fr 08.04.2016
Autor: chrisno

Die Ebene hat schon eine spezielle Lage, die man gut nur mit Worten beschreiben kann. Auch durch Linearkombination der beiden Spannvektoren, Summe und Differenz, wird das schnell klar.

Bezug
        
Bezug
Beschreibung einer Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Fr 08.04.2016
Autor: fred97


> Gegeben ist die Ebene E mit der Parametergleichung
> E: [mm]\vec{x}[/mm] = r * [mm]\pmat{ 1 \\ 1 \\ 1 }[/mm] + s * [mm]\pmat{ -1 \\ -1 \\ 1 }[/mm]
> .
>  
> Beschreiben Sie die Lage der Ebene E im Koordinatensystem.
>  Hallo,
>  
> im Grunde kann ich aus dieser Gleichung nur herauslesen,
> dass sie durch den Ursprung geht. Sie ist weder parallel zu
> irgendeiner [mm]x_1, x_2[/mm] oder [mm]x_1, x_3[/mm] oder [mm]x_2,x_3[/mm] -Ebene.
> Daher weiß ich nicht, in wie weit ich sie noch näher
> beschreiben könnte?!  


Die Lage der Ebene springt einem ins Gesicht, wenn man einen Normalenvektor der Ebene Berechnet.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]