matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungBestimme Anzahl Kugeln i Urne
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitsrechnung" - Bestimme Anzahl Kugeln i Urne
Bestimme Anzahl Kugeln i Urne < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimme Anzahl Kugeln i Urne: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Fr 05.11.2021
Autor: hase-hh

Aufgabe
In einer Urne liegen schwarze und weiße Kugeln und zwar doppelt so viele
schwarze wie weiße. Die Wahrscheinlichkeit dafür, dass man bei gleichzeitigem Herausnehmen von drei Kugeln, zwei schwarze und eine weiße Kugel erhält, ist  P [mm] \ge [/mm] ½ .

Weisen Sie nach, dass in der Urne höchstens 12 Kugeln sind.

Moin Moin,

ich kann diese Aufgabe natürlich durch Probieren lösen. Aber mich interessiert in erster Linie, ob man das Problem auch allgemein lösen kann?


Lösen durch Probieren

Es handelt sich um ein Ziehen auf einen Griff bzw. ein Ziehen ohne Zurücklegen, wobei die Reihenfolge keine Rolle spielt.

Ich betrachte die Zufallsgröße X: "Anzahl der gezogenen schwarzen Kugeln"; d.h. X ist hypergeometrisch verteilt mit N, M = 2/3*N, n =3  und k = 2. Wenn das Verhältnis von schwarzen Kugeln zu weißen Kugeln 2:1 betragen soll, kommen für die Gesamtzahl der Kugeln in der Urne nur durch drei teilbare Zahlen infrage.

P(X=2) = [mm] \bruch{\vektor{M \\ 2}*\vektor{N-M \\ 1}}{\vektor{N \\ 3}} [/mm]


1) N = 12  =>  M = 8,  n = 3, k = 2  

mit  P(X=2) = [mm] \bruch{\vektor{8 \\ 2}*\vektor{4 \\ 1}}{\vektor{12 \\ 3}} [/mm]

P(X=2) [mm] \approx [/mm] 50,9 %


2) N =  9  =>  M = 6,  n = 3, k = 2  

mit  P(X=2) = [mm] \bruch{\vektor{6 \\ 2}*\vektor{3 \\ 1}}{\vektor{9 \\ 3}} [/mm]

P(X=2) [mm] \approx [/mm] 53,6 %


3) N =  6  =>  M = 4,  n = 3, k = 2  

mit  P(X=2) = [mm] \bruch{\vektor{4 \\ 2}*\vektor{2 \\ 1}}{\vektor{6 \\ 3}} [/mm]

P(X=2) = 60 %



4) N =  3  =>  M = 2,  n = 3, k = 2  

mit  P(X=2) = [mm] \bruch{\vektor{2 \\ 2}*\vektor{1 \\ 1}}{\vektor{3\\ 3}} [/mm]

P(X=2) = 100 %


5) N = 15  =>  M = 10,  n = 3, k = 2  

mit  P(X=2) = [mm] \bruch{\vektor{10\\ 2}*\vektor{5 \\ 1}}{\vektor{15 \\ 3}} [/mm]

P(X=2) [mm] \approx [/mm] 49,5 %


D.h. die Wahrscheinlichkeit beim gleichzeitigen Ziehen von drei Kugeln, zwei schwarze und eine weiße Kugel zu ziehen, nimmt mit wachsender Anzahl N der Kugeln in der Urne, immer weiter ab.


Allgemeine Lösung

Wie gesagt, gibt es vielleicht auch eine allgemeine Lösung?

Idee:

N = 3*z  M = 2*z  n = 3  k = 2

P(X=2) = [mm] \bruch{\vektor{2z \\ 2}*\vektor{z \\ 1}}{\vektor{3z\\ 3}} \ge \bruch{1}{2} [/mm]

P(X=2) = [mm] \bruch{\vektor{2z \\ 2}*z}{\vektor{3z\\ 3}} \ge \bruch{1}{2} [/mm]


Aber kann man das weiter umformen, d.h. deutlich vereinfachen?


Danke & Gruß!




















        
Bezug
Bestimme Anzahl Kugeln i Urne: Antwort
Status: (Antwort) fertig Status 
Datum: 07:58 Sa 06.11.2021
Autor: statler


> In einer Urne liegen schwarze und weiße Kugeln und zwar
> doppelt so viele
> schwarze wie weiße. Die Wahrscheinlichkeit dafür, dass
> man bei gleichzeitigem Herausnehmen von drei Kugeln, zwei
> schwarze und eine weiße Kugel erhält, ist  P [mm]\ge[/mm] ½ .
>  
> Weisen Sie nach, dass in der Urne höchstens 12 Kugeln
> sind.

Guten Morgen!

> ich kann diese Aufgabe natürlich durch Probieren lösen.
> Aber mich interessiert in erster Linie, ob man das Problem
> auch allgemein lösen kann?
>  
>
> Lösen durch Probieren
>  
> Es handelt sich um ein Ziehen auf einen Griff bzw. ein
> Ziehen ohne Zurücklegen, wobei die Reihenfolge keine Rolle
> spielt.
>
> Ich betrachte die Zufallsgröße X: "Anzahl der gezogenen
> schwarzen Kugeln"; d.h. X ist hypergeometrisch verteilt mit
> N, M = 2/3*N, n =3  und k = 2. Wenn das Verhältnis von
> schwarzen Kugeln zu weißen Kugeln 2:1 betragen soll,
> kommen für die Gesamtzahl der Kugeln in der Urne nur durch
> drei teilbare Zahlen infrage.
>
> P(X=2) = [mm]\bruch{\vektor{M \\ 2}*\vektor{N-M \\ 1}}{\vektor{N \\ 3}}[/mm]
>  
>
> 1) N = 12  =>  M = 8,  n = 3, k = 2  

>
> mit  P(X=2) = [mm]\bruch{\vektor{8 \\ 2}*\vektor{4 \\ 1}}{\vektor{12 \\ 3}}[/mm]
>  
> P(X=2) [mm]\approx[/mm] 50,9 %
>  
>
> 2) N =  9  =>  M = 6,  n = 3, k = 2  

>
> mit  P(X=2) = [mm]\bruch{\vektor{6 \\ 2}*\vektor{3 \\ 1}}{\vektor{9 \\ 3}}[/mm]
>  
> P(X=2) [mm]\approx[/mm] 53,6 %
>  
>
> 3) N =  6  =>  M = 4,  n = 3, k = 2  

>
> mit  P(X=2) = [mm]\bruch{\vektor{4 \\ 2}*\vektor{2 \\ 1}}{\vektor{6 \\ 3}}[/mm]
>  
> P(X=2) = 60 %
>  
>
>
> 4) N =  3  =>  M = 2,  n = 3, k = 2  

>
> mit  P(X=2) = [mm]\bruch{\vektor{2 \\ 2}*\vektor{1 \\ 1}}{\vektor{3\\ 3}}[/mm]
>  
> P(X=2) = 100 %
>  
>
> 5) N = 15  =>  M = 10,  n = 3, k = 2  

>
> mit  P(X=2) = [mm]\bruch{\vektor{10\\ 2}*\vektor{5 \\ 1}}{\vektor{15 \\ 3}}[/mm]
>  
> P(X=2) [mm]\approx[/mm] 49,5 %
>  
>
> D.h. die Wahrscheinlichkeit beim gleichzeitigen Ziehen von
> drei Kugeln, zwei schwarze und eine weiße Kugel zu ziehen,
> nimmt mit wachsender Anzahl N der Kugeln in der Urne, immer
> weiter ab.

Das ist jetzt zwar zu vermuten, aber keinesfalls stringent bewiesen.

>
> Allgemeine Lösung
>
> Wie gesagt, gibt es vielleicht auch eine allgemeine
> Lösung?
>  
> Idee:

Gute Idee!

>
> N = 3*z  M = 2*z  n = 3  k = 2
>  
> P(X=2) = [mm]\bruch{\vektor{2z \\ 2}*\vektor{z \\ 1}}{\vektor{3z\\ 3}} \ge \bruch{1}{2}[/mm]
>  
> P(X=2) = [mm]\bruch{\vektor{2z \\ 2}*z}{\vektor{3z\\ 3}} \ge \bruch{1}{2}[/mm]
>  
>
> Aber kann man das weiter umformen, d.h. deutlich
> vereinfachen?

Ja, kann man.

[mm]\bruch{\vektor{2z \\ 2}*z}{\vektor{3z\\ 3}} = \bruch{(2z-1)(2z)}{(3z-2)(3z-1)}[/mm]

Das ergibt für z = 5 den Wert [mm] $\frac{90}{192}$. [/mm] Außerdem ist der Grenzwert offenbar [mm] $\frac{4}{9}$. [/mm] Man muß also noch zeigen, daß die Folge für $z [mm] \ge [/mm] 5$ monoton fallend ist.
Das überlasse ich erstmal dir.

Gruß Dieter


Bezug
                
Bezug
Bestimme Anzahl Kugeln i Urne: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:05 So 07.11.2021
Autor: hase-hh

...
> > Allgemeine Lösung
> >
> > N = 3*z  M = 2*z  n = 3  k = 2


> > P(X=2) = [mm]\bruch{\vektor{2z \\ 2}*\vektor{z \\ 1}}{\vektor{3z\\ 3}} \ge \bruch{1}{2}[/mm]
>  
> >  

> > P(X=2) = [mm]\bruch{\vektor{2z \\ 2}*z}{\vektor{3z\\ 3}} \ge \bruch{1}{2}[/mm]

> > Aber kann man das weiter umformen, d.h. deutlich
> > vereinfachen?
>  
> Ja, kann man.
>
> [mm]\bruch{\vektor{2z \\ 2}*z}{\vektor{3z\\ 3}} = \bruch{(2z-1)(2z)}{(3z-2)(3z-1)}[/mm]

Also, da [mm] \vektor{n \\ k} [/mm] = [mm] \bruch{n!}{(n-k)!*k!} [/mm] folgt:

[mm] \vektor{2z \\ 2} [/mm] = [mm] \bruch{(2z)!}{(2z-2)!*2!} [/mm] = [mm] \bruch{2z*(2z-1)*(2z-2)!}{(2z-2)!*2*1} [/mm] = [mm] \bruch{2z*(2z-1)}{2} [/mm]

[mm] \vektor{3z \\ 3} [/mm] = [mm] \bruch{(3z)!}{(3z-3)!*3!} [/mm] = [mm] \bruch{3z*(3z-1)*(3z-2)*(3z-3)!}{(3z-3)!*3*2*1} [/mm] = [mm] \bruch{3z*(3z-1)*(3z-2)}{6} [/mm]

Eingesetzt in die Formel

[mm]\bruch{\bruch{2z*(2z-1)}{2}*z}{\bruch{3z*(3z-1)*(3z-2)}{6}} \ge \bruch{1}{2}[/mm]

[mm]\bruch{{z*(2z-1)}*z}{\bruch{z*(3z-1)*(3z-2)}{2}} \ge \bruch{1}{2}[/mm]

[mm]\bruch{{(2z-1)}*2*z}{(3z-1)*(3z-2)} \ge \bruch{1}{2}[/mm]


> Das ergibt für z = 5 den Wert [mm]\frac{90}{192}[/mm]. Außerdem
> ist der Grenzwert offenbar [mm]\frac{4}{9}[/mm]. Man muß also noch
> zeigen, daß die Folge für [mm]z \ge 5[/mm] monoton fallend ist.

wenn ich jetzt umforme

[mm] \bruch{{(2z-1)}*2*z}{(3z-1)*(3z-2)} \ge \bruch{1}{2} [/mm]   | *2 *(3z-1)*(3z-2)

(2z-1)*2*z*2 [mm] \ge [/mm]  (3z-1)*(3z-2)
  
[mm] 8z^2-4z \ge 9z^2 [/mm] -9z +2

[mm] -z^2 [/mm] +5z -2 [mm] \ge [/mm] 0

Die Nullstellen begrenzen hier das Intervall, in dem die Funktionswerte von [mm] -z^2 [/mm] +5z -2 < 0 sind, d.h. das Intervall, in dem die Ungleichung gilt.

[mm] z_1 \approx [/mm] 4,56

[mm] z_2 \approx [/mm] 0,44  

Also müsste z [mm] \ge [/mm] 0,44 oder z [mm] \le [/mm] 4,56 sein bzw.  =>  z [mm] \in [/mm] [1;4] .




>  


Bezug
                        
Bezug
Bestimme Anzahl Kugeln i Urne: Antwort
Status: (Antwort) fertig Status 
Datum: 08:06 So 07.11.2021
Autor: statler

Moinsen!
>  
> Eingesetzt in die Formel
>
> [mm]\bruch{\bruch{2z*(2z-1)}{2}*z}{\bruch{3z*(3z-1)*(3z-2)}{6}} \ge \bruch{1}{2}[/mm]
>  
> [mm]\bruch{{z*(2z-1)}*z}{\bruch{z*(3z-1)*(3z-2)}{2}} \ge \bruch{1}{2}[/mm]
>  
> [mm]\bruch{{(2z-1)}*2*z}{(3z-1)*(3z-2)} \ge \bruch{1}{2}[/mm]
>  
>
> > Das ergibt für z = 5 den Wert [mm]\frac{90}{192}[/mm]. Außerdem
> > ist der Grenzwert offenbar [mm]\frac{4}{9}[/mm]. Man muß also noch
> > zeigen, daß die Folge für [mm]z \ge 5[/mm] monoton fallend ist.
>  
> wenn ich jetzt umforme
>
> [mm]\bruch{{(2z-1)}*2*z}{(3z-1)*(3z-2)} \ge \bruch{1}{2}[/mm]   |
> *2 *(3z-1)*(3z-2)

Jetzt wird es tückisch! Bei Ungleichungen muß man aufpassen, daß sich die Richtung umkehrt, wenn man mit Werten < 0 multipliziert. Gegebenenfalls muß man dazu Fälle unterscheiden. Hier ist es besser, statt der Ungleichung die zugehörige Gleichung zu untersuchen.

> (2z-1)*2*z*2 [mm]\ge[/mm]  (3z-1)*(3z-2)
>    
> [mm]8z^2-4z \ge 9z^2[/mm] -9z +2
>
> [mm]-z^2[/mm] +5z -2 [mm]\ge[/mm] 0
>
> Die Nullstellen begrenzen hier das Intervall, in dem die
> Funktionswerte von [mm]-z^2[/mm] +5z -2 < 0 sind, d.h. das
> Intervall, in dem die Ungleichnung gilt.

Die Funktion [mm]f(z) = -z^2[/mm] +5z -2 ist eine nach unten geöffnete Parabel, ....

>
> [mm]z_1 \approx[/mm] 4,56
>
> [mm]z_2 \approx[/mm] 0,44  
>
> Also müsste z > 0,44 oder z < 4,56 sein.
>
> =>  z [mm]\in[/mm] [1;4] sein.

... also ist der Funktionswert für z [mm]\in[/mm] [1;4] > 0.

Wie sieht das jetzt bei dem Term [mm] $\frac{{(2z-1)}*2*z}{(3z-1)*(3z-2)} [/mm] =: g(z)$ aus, der uns eigentlich interessiert?

Wir kennen die Stellen, wo $ g(z) = [mm] \frac{1}{2}$ [/mm] ist. Für z [mm]\in[/mm] [1;4] ist g(z) stetig, also reicht es, z = 2 einzusetzen: $g(2) = [mm] \frac{3}{5} [/mm] > [mm] \frac{1}{2}$. [/mm] Also ist g(z) im gesamten Intervall $> [mm] \frac{1}{2}$, [/mm] also ist $z [mm] \ge [/mm] 5$ die Lösung.

Den Beweis der Monotonie haben wir auf diesem Wege vermieden.

Gruß Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]