matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenBestimme y(x) nebs Anfangsb.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Bestimme y(x) nebs Anfangsb.
Bestimme y(x) nebs Anfangsb. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimme y(x) nebs Anfangsb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:47 Mi 12.02.2014
Autor: Brokando

Aufgabe
(a) Man bestimme eine Funktion y (x ) , die der folgenden Differentialgleichung nebst
Anfangsbedingung genügt:
[mm] x^{2} [/mm] * y' = [mm] y^{2} [/mm] und y(1) = 1/2

(b) Man bestimme eine Funktion y (x ) , die den folgenden Bedingungen genügt:
y'' = 2 und y (0) = 1; y (2) = 1

Zu (b): Falls man (was keineswegs nötig ist) diese Aufgabe als
Differentialgleichungsproblem behandelt, so findet man eine spezielle Lösung y0 der
inhomogenen Differentialgleichung (IDGL) mit dem Ansatz y0(x) = [mm] a*x^2 [/mm]

Hallo,

leider habe ich nur das Ergebnis dieser Aufgabe und ich weiß einfach nicht genau, was ich machen soll..

ich habe bei a) nach y' umgestellt:

y' = [mm] x^2/y^2 [/mm]

danach muss man integrieren oder?
Eigentlich weiß ich hier schon nicht weiter..

Kann mir jemand helfen?

Viele Grüße,

Marcel

        
Bezug
Bestimme y(x) nebs Anfangsb.: Antwort
Status: (Antwort) fertig Status 
Datum: 10:51 Mi 12.02.2014
Autor: fred97


> (a) Man bestimme eine Funktion y (x ) , die der folgenden
> Differentialgleichung nebst
>  Anfangsbedingung genügt:
>  [mm]x^{2}[/mm] * y' = [mm]y^{2}[/mm] und y(1) = 1/2
>  
> (b) Man bestimme eine Funktion y (x ) , die den folgenden
> Bedingungen genügt:
>  y'' = 2 und y (0) = 1; y (2) = 1
>  
> Zu (b): Falls man (was keineswegs nötig ist) diese Aufgabe
> als
>  Differentialgleichungsproblem behandelt, so findet man
> eine spezielle Lösung y0 der
>  inhomogenen Differentialgleichung (IDGL) mit dem Ansatz
> y0(x) = [mm]a*x^2[/mm]
>  Hallo,
>  
> leider habe ich nur das Ergebnis dieser Aufgabe und ich
> weiß einfach nicht genau, was ich machen soll..
>  
> ich habe bei a) nach y' umgestellt:
>  
> y' = [mm]x^2/y^2[/mm]
>  
> danach muss man integrieren oder?
>  Eigentlich weiß ich hier schon nicht weiter..
>  
> Kann mir jemand helfen?

Tipp: Trennung der Variablen.

FRED

>  
> Viele Grüße,
>  
> Marcel


Bezug
                
Bezug
Bestimme y(x) nebs Anfangsb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Mi 12.02.2014
Autor: Brokando

Ok, das war ein guter Tipp :)

also:

y' = [mm] \bruch{x^{2}}{y^{2}} [/mm]

[mm] \bruch{dy}{dx} [/mm] = [mm] \bruch{x^{2}}{y^{2}} [/mm]

[mm] x^{2} [/mm] dx = [mm] y^{2} [/mm] dy


[mm] \integral_{}^{}{x^{2} dx} [/mm] = [mm] \integral_{}^{}{y^{2} dy} [/mm]

[mm] \bruch{1}{3} \* x^3 [/mm] = [mm] \bruch{1}{3} \* y^3 [/mm]

Bis hierhin richtig?

Bezug
                        
Bezug
Bestimme y(x) nebs Anfangsb.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 Mi 12.02.2014
Autor: fred97


> Ok, das war ein guter Tipp :)
>  
> also:
>  
> y' = [mm]\bruch{x^{2}}{y^{2}}[/mm]

Nein. Sondern  y' = [mm]\bruch{y^{2}}{x^{2}}[/mm]

Das hatte ich oben leider übersehen.

FRED

>  
> [mm]\bruch{dy}{dx}[/mm] = [mm]\bruch{x^{2}}{y^{2}}[/mm]
>  
> [mm]x^{2}[/mm] dx = [mm]y^{2}[/mm] dy
>  
>
> [mm]\integral_{}^{}{x^{2} dx}[/mm] = [mm]\integral_{}^{}{y^{2} dy}[/mm]
>  
> [mm]\bruch{1}{3} \* x^3[/mm] = [mm]\bruch{1}{3} \* y^3[/mm]
>  
> Bis hierhin richtig?


Bezug
                                
Bezug
Bestimme y(x) nebs Anfangsb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:48 Mi 12.02.2014
Autor: Brokando

Ja.. jetzt macht das auch sinn warum meine Lösung nicht zu der des Profs gepasst hat :( oh mann..


y' = [mm] \bruch{y^{2}}{x^{2}} [/mm]

[mm] \bruch{dy}{dx} [/mm] = [mm]\bruch{y^{2}}{x^{2}}[/mm]

[mm]\integral_{}^{}{\bruch{x^{2}}{dx}}[/mm] = [mm]\integral_{}^{}{\bruch{y^{2}}{dy}}[/mm]

oder

[mm]\integral_{}^{}{\bruch{dx}{x^{2}}}[/mm] = [mm]\integral_{}^{}{\bruch{dy}{y^{2}}}[/mm]

?

gibt es da ne Regel?


Bezug
                                        
Bezug
Bestimme y(x) nebs Anfangsb.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Mi 12.02.2014
Autor: fred97


> Ja.. jetzt macht das auch sinn warum meine Lösung nicht zu
> der des Profs gepasst hat :( oh mann..
>
>
> y' = [mm]\bruch{y^{2}}{x^{2}}[/mm]
>  
> [mm]\bruch{dy}{dx}[/mm] = [mm]\bruch{y^{2}}{x^{2}}[/mm]
>  
> [mm]\integral_{}^{}{\bruch{x^{2}}{dx}}[/mm] =


Das ist ja grausam .......


> [mm]\integral_{}^{}{\bruch{y^{2}}{dy}}[/mm]



Das ist ja grausam .......


>  
> oder
>  
> [mm]\integral_{}^{}{\bruch{dx}{x^{2}}}[/mm] =
> [mm]\integral_{}^{}{\bruch{dy}{y^{2}}}[/mm]

Schon besser.

>  
> ?
>  
> gibt es da ne Regel?

Ja:

http://de.wikipedia.org/wiki/Tabelle_von_Ableitungs-_und_Stammfunktionen

FRED

>  


Bezug
                                                
Bezug
Bestimme y(x) nebs Anfangsb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 Mi 12.02.2014
Autor: Brokando


>  >  
> > [mm]\integral_{}^{}{\bruch{dx}{x^{2}}}[/mm] =
> > [mm]\integral_{}^{}{\bruch{dy}{y^{2}}}[/mm]
>  
> Schon besser.
>  >  
> > ?
>  >  
> > gibt es da ne Regel?
>  
> Ja:
>  
> http://de.wikipedia.org/wiki/Tabelle_von_Ableitungs-_und_Stammfunktionen

Ich meinte eigentlich, warum dx und dy im Zähler stehen müssen..

es ist doch eigentlich möglich das:

$ [mm] \bruch{dy}{dx} [/mm] $ = $ [mm] \bruch{y^{2}}{x^{2}} [/mm] $

mal [mm] x^2 [/mm] und durch dy zu rechnen und man kommt auf

[mm] \integral_{}^{}{\bruch{x^{2}}{dx}} [/mm] = [mm] \integral_{}^{}{\bruch{y^{2}}{dy}} [/mm]

Oder bin ich da einfach gerade nur verwirrt? :P



Den Rest der Aufgabe mit dem Wissen, dass

[mm]\integral_{}^{}{\bruch{dy}{g(x)}}[/mm] = [mm]\integral_{}^{}{\bruch{dy}{y^{2}}}[/mm]

stimmt, würde ich so lösen:

[mm] \bruch{-1}{x} [/mm] = [mm] \bruch{-1}{y} [/mm]

[mm] \bruch{1}{x} [/mm] = [mm] \bruch{1}{y} [/mm]

[mm] \bruch{1}{y} [/mm] = [mm] \bruch{1}{x} [/mm] + C

y(1) = 1/2 [mm] \Rightarrow \bruch{1}{1/2} [/mm] = [mm] \bruch{1}{1} [/mm] + C

[mm] \Rightarrow [/mm] C=1

[mm] \Rightarrow y=\bruch{1}{\bruch{1}{x} + 1} [/mm]


VIELEN DANK schon mal bisher.. das hat mir wirklich weitergeholfen


Bezug
                                                        
Bezug
Bestimme y(x) nebs Anfangsb.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 Mi 12.02.2014
Autor: fred97


> >  >  

> > > [mm]\integral_{}^{}{\bruch{dx}{x^{2}}}[/mm] =
> > > [mm]\integral_{}^{}{\bruch{dy}{y^{2}}}[/mm]
>  >  
> > Schon besser.
>  >  >  
> > > ?
>  >  >  
> > > gibt es da ne Regel?
>  >  
> > Ja:
>  >  
> >
> http://de.wikipedia.org/wiki/Tabelle_von_Ableitungs-_und_Stammfunktionen
>  
> Ich meinte eigentlich, warum dx und dy im Zähler stehen
> müssen..
>  
> es ist doch eigentlich möglich das:
>  
> [mm]\bruch{dy}{dx}[/mm] = [mm]\bruch{y^{2}}{x^{2}}[/mm]
>
> mal [mm]x^2[/mm] und durch dy zu rechnen und man kommt auf
>
> [mm]\integral_{}^{}{\bruch{x^{2}}{dx}}[/mm] =
> [mm]\integral_{}^{}{\bruch{y^{2}}{dy}}[/mm]
>  
> Oder bin ich da einfach gerade nur verwirrt? :P
>  
>
>
> Den Rest der Aufgabe mit dem Wissen, dass
>  
> [mm]\integral_{}^{}{\bruch{dy}{g(x)}}[/mm] =
> [mm]\integral_{}^{}{\bruch{dy}{y^{2}}}[/mm]
>
> stimmt, würde ich so lösen:
>  
> [mm]\bruch{-1}{x}[/mm] = [mm]\bruch{-1}{y}[/mm]
>  
> [mm]\bruch{1}{x}[/mm] = [mm]\bruch{1}{y}[/mm]
>  
> [mm]\bruch{1}{y}[/mm] = [mm]\bruch{1}{x}[/mm] + C
>  
> y(1) = 1/2 [mm]\Rightarrow \bruch{1}{1/2}[/mm] = [mm]\bruch{1}{1}[/mm] + C
>  
> [mm]\Rightarrow[/mm] C=1
>  
> [mm]\Rightarrow y=\bruch{1}{\bruch{1}{x} + 1}[/mm]

Stimmt

FRED

>  
>
> VIELEN DANK schon mal bisher.. das hat mir wirklich
> weitergeholfen
>  


Bezug
        
Bezug
Bestimme y(x) nebs Anfangsb.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Mi 12.02.2014
Autor: HJKweseleit


> (a) Man bestimme eine Funktion y (x ) , die der folgenden
> Differentialgleichung nebst
>  Anfangsbedingung genügt:
>  [mm]x^{2}[/mm] * y' = [mm]y^{2}[/mm] und y(1) = 1/2
>  
> (b) Man bestimme eine Funktion y (x ) , die den folgenden
> Bedingungen genügt:
>  y'' = 2 und y (0) = 1; y (2) = 1
>  
> Zu (b): Falls man (was keineswegs nötig ist) diese Aufgabe
> als
>  Differentialgleichungsproblem behandelt, so findet man
> eine spezielle Lösung y0 der
>  inhomogenen Differentialgleichung (IDGL) mit dem Ansatz
> y0(x) = [mm]a*x^2[/mm]
>  Hallo,
>  
> leider habe ich nur das Ergebnis dieser Aufgabe und ich
> weiß einfach nicht genau, was ich machen soll..
>  
> ich habe bei a) nach y' umgestellt:
>  
> y' = [mm]x^2/y^2[/mm]    [notok]   Es ist y' = [mm]y^2/x^2[/mm]
>  
> danach muss man integrieren oder?
>  Eigentlich weiß ich hier schon nicht weiter..


Ja. Und das geht (hier, aber nicht immer) so:

y' [mm] =\bruch{dy}{dx} [/mm] = [mm]y^2/x^2[/mm]

und [mm] \bruch{dy}{dx} [/mm] fasst du nun als Bruch auf (DAS IST DER ALLEINIGE GRUND, WESHALB MAN DAS SO SCHREIBT!)

Den formst du so um, dass "alles mit y" auf eine und "alles mit x" auf die andere Seite kommt (und das geht eben nicht immer).

[mm] \bruch{dy}{y^2} [/mm]  = [mm] \bruch{dx}{x^2} [/mm]

Jetzt integrierst du links und rechts. Vergiss nicht die Integrationskonstante C (reicht auf einer Seite der Gleichung - warum?)


Zu b) Du integrierst y''=2 zwei mal und fügst jedesmal eine Integrationskonstante hinzu. Dann erhältst du eine quadratische Funktion, und die passt du nun durch die richtige Festlegung der Integrationskonstanten so an, dass die beiden anderen Bedingungen erfüllt werden (Parameteraufgabe).


>  
> Kann mir jemand helfen?
>  
> Viele Grüße,
>  
> Marcel


Bezug
                
Bezug
Bestimme y(x) nebs Anfangsb.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:29 Mi 12.02.2014
Autor: HJKweseleit

Sorry, dein und Freds zweiter Beitrag waren bei mir noch nicht im Rechner, mein Beitrag ist somit überflüssig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]