matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesBestimmen eines Polynoms
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - Bestimmen eines Polynoms
Bestimmen eines Polynoms < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmen eines Polynoms: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:30 So 16.03.2014
Autor: mimo1

Aufgabe
Bestimmen Sie ein Polynom p(x) so ,dass [mm] |exp(x)-p(x)|<10^{-2} [/mm] für alle [mm] x\in [/mm] [-1,1].

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
ich habe einige Schwierigkeiten diese Aufgabe zu lösen und bin daher für jeden Tipp/ Starthilfe dankbar.
Meine Überlegung wäre erstmal exp(x) in eine Reihe umzuschreiben, nämlich
[mm] |1+x+\bruch{x^{2}}{2!}+\bruch{x^3}{3!}+...-p(x)|<10^{-2} [/mm]
dann könnte man die betragstriche "auflösen":
[mm] -(1+x+\bruch{x^{2}}{2!}+\bruch{x^3}{3!}+...-p(x))<10^{-2} \Rightarrow p(x)<10^{-2}+1+x+\bruch{x^2}{2!}+... [/mm] und
[mm] 1+x+\bruch{x^{2}}{2!}+\bruch{x^3}{3!}+...-p(x)<10^{-2} \Rightarrow [/mm] p(x)> [mm] 1+x+\bruch{x^{2}}{2!}+\bruch{x^3}{3!}+...-10^{-2} [/mm]

Falls es richtig ist, bin ich dann fertig? Oder denke ich komplett falsch?

Gruss
mimo1

        
Bezug
Bestimmen eines Polynoms: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 So 16.03.2014
Autor: Marcel

Hallo,

> Bestimmen Sie ein Polynom p(x) so ,dass
> [mm]|exp(x)-p(x)|<10^{-2}[/mm] für alle [mm]x\in[/mm] [-1,1].
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo,
> ich habe einige Schwierigkeiten diese Aufgabe zu lösen und
> bin daher für jeden Tipp/ Starthilfe dankbar.
>  Meine Überlegung wäre erstmal exp(x) in eine Reihe
> umzuschreiben, nämlich
>  [mm]|1+x+\bruch{x^{2}}{2!}+\bruch{x^3}{3!}+...-p(x)|<10^{-2}[/mm]
>  dann könnte man die betragstriche "auflösen":
>  [mm]-(1+x+\bruch{x^{2}}{2!}+\bruch{x^3}{3!}+...-p(x))<10^{-2} \Rightarrow p(x)<10^{-2}+1+x+\bruch{x^2}{2!}+...[/mm]
> und
>  [mm]1+x+\bruch{x^{2}}{2!}+\bruch{x^3}{3!}+...-p(x)<10^{-2} \Rightarrow[/mm]
> p(x)> [mm]1+x+\bruch{x^{2}}{2!}+\bruch{x^3}{3!}+...-10^{-2}[/mm]
>  
> Falls es richtig ist, bin ich dann fertig? Oder denke ich
> komplett falsch?

das bringt Dir doch irgendwie nichts - Du hast dann am Ende nur stehen,
dass

    [mm] $1+x+x^2/(2!)+x^3/(3!)+...=\sum_{k=0}^\infty x^k/(k!)-10^{-2}=\blue{\exp(x)-10^{-2} < p(x) <10^{-2}+\exp(x)}$ [/mm]

für alle $x [mm] \in [/mm] [-1,1]$ gelten soll - das blaumarkierte kannst Du Dir aber auch
sofort aus

    [mm] $|\exp(x)-p(x)| [/mm] < [mm] 10^{-2}$ [/mm]

überlegen.

Zu der Aufgabe:
Es gilt (beachte $a+b [mm] \le a+|b|\,$ [/mm] für $a,b [mm] \in \IR$ [/mm] und auch die verallg.
Dreiecksungleichung)

    $0 [mm] \le \exp(x)=\sum_{k=0}^N \frac{x^k}{k!}+\sum_{k=N+1}^\infty \frac{x^k}{k!} \le \sum_{k=0}^N \frac{x^k}{k!}+\left|\sum_{k=N+1}^\infty \frac{x^k}{k!}\right| \le \green{\sum_{k=0}^N \frac{x^k}{k!}+\sum_{k=N+1}^\infty \frac{|x|^k}{k!} \le \sum_{k=0}^N \frac{x^k}{k!}+ \sum_{k=N+1}^\infty \frac{1}{k!}} \blue{\;=\;} \sum_{k=0}^N \frac{x^k}{k!}+\left(\exp(1)-\sum_{k=0}^N \frac{1}{k!}\right)$ [/mm]

für alle $|x| [mm] \le 1\,.$ [/mm] (Man braucht $-1 [mm] \le [/mm] x [mm] \le [/mm] 1$ bei der grünmarkierten
Abschätzung für den zweiten Summanden!)

Wenn ihr nun etwa mal für

    [mm] $\exp(1)=e\,$ [/mm]

wenigstens ein paar Nachkommastellen bewiesen/berechnet habt, sollte
Dir Aufgabe dann nicht mehr so schwer fallen.

(D.h. Du hast nur noch ein genügend großes [mm] $N\,$ [/mm] zu finden, so dass

     [mm] $p(x):=\sum_{k=0}^N \frac{x^k}{k!}$ [/mm]

geeignet erscheint.

Ansonsten könntest Du die Aufgabe auch allgemeiner mit einer
Restgliedabschätzung angehen - sowas wie in

    []Satz 14.3, hier (klick!).)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]