matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenBestimmung Determinante n×n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Determinanten" - Bestimmung Determinante n×n
Bestimmung Determinante n×n < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung Determinante n×n: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:43 Fr 31.12.2010
Autor: Coup

Aufgabe
Folgende nxn Matrix ist gegeben zur BErechnung der det
[mm] \pmat{ 2 &1&1&...&...&1\\ 1&2&1&...&...&1\\1&1&2&...&...&1 \\ 1 & 1&1&...&...&1\\...&...&...&...&...&...\\1&...&...&1&2&1\\1&...&...&1&1&2 } [/mm]


So bei folgender Matrix habe ich einfach mal für n=4,5,6 die Determinanten bestimmt und bekomme jeweils für ein höheres n eine Determinante +1
n=4  det=5  n=5 det=6.
Die Diagonalen haben alle die 2, ansonsnte 1.
Wie gebe ich denn hier nun die Determinante an ? *grübel*
Oder liege ich vielleicht auch komplett falsch mit meinem Versuch ein Schema zu erkennen ?

lg
Florian

        
Bezug
Bestimmung Determinante n×n: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 Fr 31.12.2010
Autor: ullim

Hi,

versuchs mal so. Subtraktion der zweiten von der ersten Spalte und anschließende Entwicklung nach der ersten Spalte. Dann kommst Du auf eine Rekursionsformel für die Determinate bzgl. der Dimension n. Die kannst Du explizit ausrechnen und erhälst als Ergebnis, wenn A die Matrix ist

det(A)=n+1


Bezug
                
Bezug
Bestimmung Determinante n×n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Fr 31.12.2010
Autor: Coup

hi ullim,
also liege ich garnicht so falsch mit meiner Behauptung das die Determinante n+1 ist. Und den BEweis dafür liefere ich dann am besten durch die Erklärung mit der Subraktion ?

Bezug
                        
Bezug
Bestimmung Determinante n×n: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Fr 31.12.2010
Autor: ullim

Hi,

die Annahme, das die Determinante mit der Dimension steigt, stimmt. Den Beweis musst Du aber noch im Detail führen. Also die Spaltensubtraktion ausführen und dann weiter rechnen. Das Ergebnis ist auf Matrizen der Form

[mm] A=\pmat{ a & b & .&.&. & b & b \\ b & a & .&.&. & b & b \\ . & . & .&.&. & . & . \\ . & . & .&.&. & . & . \\ . & . & .&.&. & . & . \\ b & b & .&.&. & a & b \\ b & b & .&.&. & b & a } [/mm] erweiterbar mit dem Ergebnis [mm] (a-b)^{n-1}*[a+(n-1)*b] [/mm]

Für a=2 und b=1 folgt das Ergbnis für Deinen Spezialfall.

Bezug
                                
Bezug
Bestimmung Determinante n×n: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Fr 31.12.2010
Autor: Coup

okay danke ullim, dann werde ich mal versuchen das verständlich aufs Blatt zu bringen.

liebe Grüße und guten Rutsch : )


Flo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]