matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische AnalysisBestimmung Dichtefunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "stochastische Analysis" - Bestimmung Dichtefunktion
Bestimmung Dichtefunktion < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung Dichtefunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Mi 12.02.2014
Autor: puki

Aufgabe
X und Y seien gleichverteilte stochastisch unabhängige Zufallsvariablen auf dem Intervall [2,4].
1)Bestimme Dichte von 3X
2)Bestimme Dichte von X+Y

Hallo,
ich komme bei dieser Aufgabe nicht konkret voran und wäre für Eure Hilfe dankbar.

Aus meinem Skript habe ich folgende Formeln entnommen:
[mm] p(x)=\begin{cases} 1/(b-a), & \mbox{für } a \le x \le b \\ 0, & \mbox{sonst } \end{cases} [/mm] beschreibt die Dichtefunktion.
Wenn ich die Dichten p zu X und Y berechnet habe, liefert mir
[mm] p(u)=\integral_{a}^{b}{p(x)*p(u-x) d \lambda (x)} [/mm]  die Dichte von X+Y.

Wenn ich nun strikt die Definition befolge, habe ich ja sowohl für X als auch für Y jeweils die Dichtefunktion p(x)=1/2 für x [mm] \in [/mm] [2,4]
Meine Fragen wären nun wie ich vorgehe, wenn ich 3X zu berechnen habe und ob ich die Dichtefunktionen einfach in mein zu berechnendes Integral einsetzen kann, um dann von 2 bis 4 zu integrieren? Ich habe in anderen Foren Beiträge gesehen, wo man noch einige Fallunterscheidungen machen musste, komme aber bei meiner eigenen Aufgabe nicht recht weiter.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmung Dichtefunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:22 Mi 12.02.2014
Autor: luis52

Moin puki

[willkommenmr]


>  Meine Fragen wären nun wie ich vorgehe, wenn ich 3X zu
> berechnen habe  

[mm] $P(3X\le y)=P(X\le [/mm] y/3)=...$

Bezug
                
Bezug
Bestimmung Dichtefunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:58 Mi 12.02.2014
Autor: puki

D.h. meine Dichtefunktion für 3X würde so aussehen? :

p(x)= [mm] \begin{cases} 1/2, & \mbox{für } 2 \le 3x \le 4 \\ 0, & \mbox{sonst } \end{cases} [/mm]
= [mm] \begin{cases} 1/2, & \mbox{für } 2/3 \le x \le 4/3 \\ 0, & \mbox{sonst } \end{cases} [/mm]


Bezug
                        
Bezug
Bestimmung Dichtefunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Mi 12.02.2014
Autor: luis52


> D.h. meine Dichtefunktion für 3X würde so aussehen? :
>
> p(x)= [mm]\begin{cases} 1/2, & \mbox{für } 2 \le 3x \le 4 \\ 0, & \mbox{sonst } \end{cases}[/mm]
>  
> = [mm]\begin{cases} 1/2, & \mbox{für } 2/3 \le x \le 4/3 \\ 0, & \mbox{sonst } \end{cases}[/mm]
>  

[notok] Du kannst dir selbst ueberlegen, warum das nicht stimmen *kann*, denn dieser Ausdruck ist keine Dichte.

Wenn $X_$ Werte im Intervall $[2,4]_$ annimmt, dann nimmt $3X_$ Werte
an in $[6,12]_$ ...


Bezug
                                
Bezug
Bestimmung Dichtefunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Mi 12.02.2014
Autor: puki

Okay!
Dann wäre p(x)= 1/6 für 6 [mm] \le [/mm] 3x [mm] \le [/mm] 12 für 3X meine Dichte. Oder ist der Ausdruck dann immer noch keine?

Bezug
                                        
Bezug
Bestimmung Dichtefunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Mi 12.02.2014
Autor: luis52


> Okay!
> Dann wäre p(x)= 1/6 für 6 [mm]\le[/mm] 3x [mm]\le[/mm] 12 für 3X meine
> Dichte. Oder ist der Ausdruck dann immer noch keine?

Auch das ist keine: [mm] $6\le 3x\le [/mm] 12 [mm] \iff 2\le x\le [/mm] 4$.

So musst du argumentiert: Waehle $y_$ mit [mm] $6\le y\le [/mm] 12_$. Dann gilt
[mm] $P(3X\le y)=P(X\le [/mm] y/3)=(y/3-2)/2$. Leitet man ab, so erhaelt
man als Dichte von $3X$: $p(y)= 1/6$ für [mm] $6\le [/mm] y [mm] \le [/mm] 12$ und $0_$ sonst.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]