Bestimmung einer Stammfunktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:11 So 08.07.2007 | Autor: | Schatten |
Aufgabe | Bestimmen Sie die Stammfunktion F(t) der folgenden asymmetrischen Peakfunktion: f(t)=A*Exp[-Exp{-w*(t-T)}-v*(t-T)+1] |
Hallo,
ich suche für oben stehende asymmetrische Peakfunktion die Stammfunktion. Hier nochmals die Funktion in einer etwas übersichtlicheren Darstellung:
f(t)=A*Exp[-Exp{-w*z}-v*z+1], mit z=t-T
Es handelt sich um die Integration einer verketteten Funktion.
Vielleicht hat jemand eine Lösung oder einen Lösungsvorschlag.
Vielen Dank und viele Grüße
Schatten
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:52 Mi 11.07.2007 | Autor: | rainerS |
Hallo,
> Bestimmen Sie die Stammfunktion F(t) der folgenden
> asymmetrischen Peakfunktion:
> f(t)=A*Exp[-Exp{-w*(t-T)}-v*(t-T)+1]
die Substitution [mm]y = \exp(-w(t-T))[/mm] sollte helfen. Dann ist
[mm] \integral A* \exp\left(e^{-w(t-T)}-v(t-T)+1\right)\, dt = A * \integral \exp\left( y -v \bruch{-1}{w}\ln y +1 \right) \, \bruch{-1}{w*y} \,dy = -\bruch{A*e}{w}\integral e^y *y^{v/w-1}\,dy[/mm].
Ob's weiter geht, hängt von [mm]v/w[/mm] ab: ist es eine natürliche Zahl, lässt sich vermutlich eine geschlossene Formel angeben.
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:02 Mi 25.07.2007 | Autor: | Schatten |
Hallo Rainer,
Vielen Dank für den Lösungsvorschlag. Das Verhältnis von v/w kann auch gebrochen sein, so dass sich auf diese Art wahrscheinlich keine geschlossene Funktion darstellen lässt.
Viele Grüße
Schatten
PS.: In der Ausgangsformel ist noch ein Vorzeichenfehler, aber das ändert nichts wesentliches. Die Ausgangsformel lautet: [mm] f(t)=A*e^{-e^{-w*(t-T)}-v*(t-T)+1} [/mm]
|
|
|
|