Bestimmung einer Tangenten < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:02 Do 19.01.2006 | Autor: | D-Strict |
Aufgabe | Gegeben ist die Funktion f durch f(x)=x(2-x)(x-4). Die Tangente t an den Graphen von f im Berührpunkt B geht durch den Ursprung O(0/0). Berechne die Koordinaten von B, gebe eine Gleichung von t an.
Die lösung ist B(3/3) t:y=x
|
Hi
Gegeben ist die Funktion f durch f(x)=x(2-x)(x-4). Die Tangente t an den Graphen von f im Berührpunkt B geht durch den Ursprung O(0/0). Berechne die Koordinaten von B, gebe eine Gleichung von t an.
Die lösung ist B(3/3) t:y=x
Habe leider keine Ahnung wie man dahin kommt. wär cool, wenn mir jemand den richtigen Rechenweg erklären könnte.
Habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo D-Strict,
> Gegeben ist die Funktion [mm]f[/mm] durch [mm]f(x)=x(2-x)(x-4)[/mm]. Die
> Tangente [mm]t[/mm] an den Graphen von [mm]f[/mm] im Berührpunkt [mm]B[/mm] geht durch
> den Ursprung [mm]O(0|0)[/mm]. Berechne die Koordinaten von [mm]B[/mm], gebe
> eine Gleichung von [mm]t[/mm] an.
Folgende Gedanken werden dich zur Lösung führen:
Sei [mm]t(x) := ax + b[/mm] die gesuchte Tangente.
1.) Du weißt, daß sich die Graphen von [mm]f[/mm] und [mm]t[/mm] in [mm]B\left(x_B|y_B\right)[/mm] schneiden. Folglich gilt dort: [mm]t(x_B) = f(x_B)[/mm].
2.) Was gilt für den [mm]y\texttt{--Achsenabschnitt}[/mm] von [mm]t[/mm], wenn [mm]t[/mm] durch den Ursprung geht?
3.) Was gilt für die Steigung von [mm]t[/mm]? (Was war nochmal die Ableitung in einem Punkt...?)
4.) Stelle die Steigung von [mm]t[/mm] nun durch deine Erkenntnisse aus 3.) anders dar.
5.) Fasse deine Erkenntnisse nun in einer Gleichung zusammen! In dieser Gleichung hast du also die Steigung bei der Stelle [mm]x_B[/mm](, die du in 3.) berechnet hast, ) stehen. Erinnere dich jetzt an Punkt 1.). Setze also all das ein und forme nach [mm]x_B[/mm] um.
6.) Du hast jetzt [mm]x_B[/mm] bestimmt. Setze dies in die Steigungsgleichung aus 3.) ein und erhalte [mm]a[/mm].
Viele Grüße
Karl
|
|
|
|