matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBestimmung eines Grenzwertes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Bestimmung eines Grenzwertes
Bestimmung eines Grenzwertes < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung eines Grenzwertes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 Do 12.01.2006
Autor: haeufungspunkt_epsilon

Aufgabe
Bestimmen Sie den Grenzwert der Folge:
[mm] \bruch{\bruch{1}{ \wurzel{n}}}{\bruch{1}{\wurzel(n) + (-1)^{n+1}}} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo. Ich freue mich, dass ich endlich Mitglied bei euch im Forum geworden bin und hoffe, dass ich dem einen oder anderen auch helfen kann. Doch zuerst müsst ihr mir helfen, bei der oben gegebenen Aufgabe.
Man soll den Grenzwert für [mm] n->\infty [/mm] angeben.

Also ich habe schon mal angefangen, dass ganze zu vereinfachen:

[mm] \bruch{\bruch{1}{ \wurzel{n}}}{\bruch{1}{\wurzel(n) + (-1)^{n+1}}} [/mm] =

[mm] \bruch{1}{\wurzel{n}} [/mm] * [mm] \bruch{\wurzel{n} + (-1)^{n+1}}{1} [/mm] =

[mm] \bruch{\wurzel{n} + (-1)^{n+1}}{\wurzel{n}} [/mm] =

?
?
?

= 1

Also mit dem Ergebnis bin ich mir sicher. Mir fehlen nur die Zwischenschritte, damit ich auch beweisen kann. Dass der Grenzwert auch wirklich 1 ist. Könnt ihr mir helfen?

        
Bezug
Bestimmung eines Grenzwertes: Antwort
Status: (Antwort) fertig Status 
Datum: 14:11 Do 12.01.2006
Autor: Stefan

Hallo!

Kürze mal mit [mm] $\sqrt{n}$ [/mm] und überlege, warum [mm] $\frac{(-1)^{n+1}}{\sqrt{n}}$ [/mm] gegen $0$ konvergiert...

Liebe Grüße
Stefan

Bezug
                
Bezug
Bestimmung eines Grenzwertes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:16 Do 12.01.2006
Autor: haeufungspunkt_epsilon

Hallo Stefan,

danke für deine schnelle Antwort. So ganz habe ich das noch nicht verstanden. Also wie soll ich denn mit [mm] \wurzel{n} [/mm] kürzen?
Also das der zweite Term 0 als Grenzwert hat, ist in soweit klar, weil der Zähler entweder 1 oder -1 ist und die [mm] \wurzel{n} [/mm] gegen [mm] \infty [/mm] strebt. Aber warum ist dann der ganze Term 0???


Bezug
                        
Bezug
Bestimmung eines Grenzwertes: Antwort
Status: (Antwort) fertig Status 
Datum: 14:59 Do 12.01.2006
Autor: sefauchi

[mm] \bruch{\wurzel{n} + (-1)^{n+1}}{\wurzel{n}} [/mm] ist momentan ein Quotient. Wenn Du Ihn als Summe zweier gleichnamiger Brüche darstellst, kannst Du den ersten Bruch kürzen und erhältst 1. Der zweite Summand ist Dir bekannt, setztest Du [mm] \wurzel{n}=z, [/mm] dann hieße der Term [mm] \bruch{(-1)^{n+1}}{z}, [/mm] und dessen Grenzwert für  [mm] \{z}\rightarrow\infty [/mm] ist 0.

Bezug
                                
Bezug
Bestimmung eines Grenzwertes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 Do 12.01.2006
Autor: haeufungspunkt_epsilon

Ach so, ja doch jetzt ist es klar. Aber das erste habe ich immer noch nicht verstanden. Wäre es denn keinem mögich mir die Gleichungskette aufzuschreiben? Die scheint doch nicht so lang zu sein. Bitte!


Bezug
                                        
Bezug
Bestimmung eines Grenzwertes: Gleichungskette
Status: (Antwort) fertig Status 
Datum: 15:12 Do 12.01.2006
Autor: sefauchi

[mm] \bruch{\wurzel{n} + (-1)^{n+1}}{\wurzel {n}}=\bruch{\wurzel {n} }{\wurzel{n} }+\bruch{(-1)^{n+1}}{\wurzel {n}}=1+\bruch{(-1)^{n+1}}{\wurzel {n}} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]