matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenBestimmung stationärer Stellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Bestimmung stationärer Stellen
Bestimmung stationärer Stellen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung stationärer Stellen: Problem
Status: (Frage) beantwortet Status 
Datum: 11:57 Fr 24.04.2009
Autor: Mirjam89

Aufgabe
Gegeben sei die Funktion f(x,y) durch die Gleichung
f(x,y)= -4x²-2y²+3xy+280x+10y
Berechnen Sie die stationöre Stelle der Funktion.
Bestimmen Sie das Maximum unter der Nebenbedingung 2x+5y=600

Hallo liebe Forenmitglieder!

Vielleicht könnt ihr mir mit der Lösung der Aufgabe helfen?
Das wäre super.
Ich habe zwar eine Lösung, auf diese komme ich aber nicht und weiß nicht, welche Zwischenschritte richtig bzw. falsch sind.
Vielen Dank schonmal.

Liebe Grüße
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmung stationärer Stellen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Fr 24.04.2009
Autor: angela.h.b.


> Gegeben sei die Funktion f(x,y) durch die Gleichung
>  f(x,y)= -4x²-2y²+3xy+280x+10y
>  Berechnen Sie die stationöre Stelle der Funktion.
>  Bestimmen Sie das Maximum unter der Nebenbedingung
> 2x+5y=600

Hallo,

[willkommenmr].

Denke daran, in Zukunft Deine bisherigen Rechnungen mitzuposten, dann kann man gleich sehen, was Du kannst, möglicherweise auch, was Du können solltest  und wo ggf. der Fehler liegt. Manchmal sind ja auch die angegebenen Lösungen verkehrt.

Du hast hier zwei Möglichkeiten:

A. Eliminiere aus der Nebenbedingung das y und ersezte in f das y entsprechend. Dann hängt Deine Funktion f nur noch von x ab, und Du kannst in gewohnter Manier eine Extremwertberechnung durchführen.
Am Ende ermittelst Du mithilfe der NB zu deinem errechneten [mm] x_{max} [/mm] den passenden y-Wert.

B. Möglicherweise sollst Du die Lösung mithilfe der Langragefunktion üben.
Stelle hierzu die Lagrangefunktion auf, leite partiell nach [mm] x,y,\lambda [/mm] ab.
Setze die drei partiellen Gleichungen =0 und finde alle (x,y), die das entstehende Gleichungssystem lösen.

Gruß  v. Angela



Bezug
                
Bezug
Bestimmung stationärer Stellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:20 Fr 24.04.2009
Autor: Mirjam89

Aufgabe
Bestimmen Sie die stationären Stellen der Funktion.

Hallo :)

Ja, das mache ich das nächste Mal.
Wie bestimme ich denn die stationären Stellen?
Ich habe jetzt jeweils nach x und y abgeleitet und in meiner Lösung steht dann, dass ich mit f´(x)= f´(y) = 0 auf x=50 und y= 40 kommen soll.
D.h. ich habe
0= -8x+3y+280
0= -4y+3x+10
Und wie muss ich jetzt weiter vorgehen?

Dankeschön :)

Bezug
                        
Bezug
Bestimmung stationärer Stellen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Fr 24.04.2009
Autor: angela.h.b.


> Bestimmen Sie die stationären Stellen der Funktion.
>  Hallo :)
>  
> Ja, das mache ich das nächste Mal.
>  Wie bestimme ich denn die stationären Stellen?
>  Ich habe jetzt jeweils nach x und y abgeleitet und in
> meiner Lösung steht dann, dass ich mit f´(x)= f´(y) = 0 auf
> x=50 und y= 40 kommen soll.

Hallo,

ich glaube, daß die abgedruckte Lösung zu einer anderen Aufgabe gehört:
Deine NB ist doch 2x+5y=600, und es ist nunmal 2*50 + [mm] 5*40\not=600. [/mm]
[Bei x=50  ( ==> y=100) hat die Funktion f(x,y) eine Nullstelle.]


Abgesehen davon ist mir aber nicht klar, ob Du mit dem Lagrangeansatz rechnest oder nicht.

Die Lagrangefunktion wäre hier  [mm] L(x,y,\lambda)= [/mm] -4x²-2y²+3xy+280x+10y [mm] +\lambda [/mm] (600-2x-5y).

Du müßtest partiell nach [mm] x,y,\lambda [/mm] ableiten, diese Ableitungen =0 setzen und das System lösen.


Ohne Lagragemultiplikator hätte man aus der Nebenbedingung   y=120 - [mm] \bruch{2}{5}x, [/mm] dies eingesetzt in f(x,y) ergibt

f(x)=-4x²-2*(120 - [mm] \bruch{2}{5}x)²+3x(120 [/mm] - [mm] \bruch{2}{5}x)+280x+10*(120 [/mm] - [mm] \bruch{2}{5}x), [/mm] und dies wäre zu optimieren.

(Ich habe gerade keine Zeit herumzurechnen, hab's aber geplottet, und es sieht so aus, als läge das Maximum bei  x=75 oder in der Nähe.)

Gruß v. Angela






Bezug
                                
Bezug
Bestimmung stationärer Stellen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:10 Fr 24.04.2009
Autor: Mirjam89

Oje, oje.
Komische Aufgabe.
Leider weiß ich gar nicht, was eine Langragefunktion ist.
Studiere Steuern und Prüfungswesen und bin froh, dass das die erste und einzige Klausur zur Finanzmathematik ist.
Trotzdem vielen Dank!!

Lg Mirjam

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]